PART II: DEEP LEARNING

CONTEXT
What you have learned

The machine learning canon:
¢ Tools: linear algebra, optimization, sampling, model selection, ...
¢ Principles: loss, risk, regularization, probabilistic modeling,...

o Algorithms/Problems: classification, dimension reduction, regression,...

All (supervised) methods share a common recipe:
 Frame the problem as learning a function from a family 7 = {fp : 0 € O}
fo :RY = {0,1}or[0,1]) fo:RY > Ax fe:RY 5 RE i SxA—=S

¢ Specify a loss function between model and data

K
L(fg(x),y) = —ylogfg(x)—(1—y)log (1 — fo(x)) L= —> ylogfg(x)r L=y —foWI3 L=..

k=1

» Minimize the empirical risk on a dataset {(x1,y1), ..., (Xn, yn) }

* - 1 -
0™ = argmin, ;ZL(fe(Xi),)’i)

i=1

Key point: this is machine learning. It works.

Advanced Machine Learning

BUT WHAT ABOUT ALL THE Al HYPE?

Modern AI/ML is the same recipe

* Gather data, choose F = {fy : 6 € ©}, specify loss, minimize empirical risk
o All the same potential issues exist (wrong F, under/overfitting, optimization issues,...)

¢ The same statistical and computational thinking is necessary

The four catalysts of the Al explosion
1. Large and readily available datasets
2. Massive and cheap computational power
3. Flexible and general function families F
4

. Open-source ML software libraries with powerful abstractions

We will study some neural network families /. While neural networks are powerful,
there is nothing magical or fundamentally different than what you already know.

Advanced Machine Learning

CATALYST 1: DATA

Computer Vision

SVHN CIFAR10 ImageNet
1=])
56 | I
HeE “\
Reinforcement Learning
OpenAl Breakout | OpenAl Cartpole UCB Pacman
]
Natural Language Processing
Twitter Jeopardy

Wikipedia (English)

7 oo

And so much more...

e https://www.data.gov/

e https://opendata.cityofnewyork.us/
e https://github.com/caesar0301/awesome-public-datasets

e https://data.world

Advanced Machine I

earning

See https://github.com/niderhoff/nlp-datasets

47163

CATALYST 2: COMPUTATIONAL POWER

Advanced

Processing power has continued to grow... and become cheaper...

1 s

P
NMULTIPLE CORES THOUSANDS OF CORES

Cloud computing has made this even easier (abstracting away IT and system ops)

amazon)

webservices Google Cloud Platform

Machine Learning

CATALYST 3: NEURAL NETWORKS

Neural unit

Input layer Hidden layer | Hidden layer 2 Output layer

With enough layers and enough units per layer, the network is a universal function
approximator: any function can be fit (given enough data...).

e Inputs x? enter into unit j, weighted by edges wg and are summed with bias b]'

e o(-) provides elementwise nonlinearity

e The result le is transmitted to layer 2, the next layer

Learning/Training is then minimizing an empirical risk over the parameter set

¢ 0
0= {Wijvbj }iJ T {We, b},

Advanced Machine Learning

6

163

EXAMPLE: LOGISTIC REGRESSION — NEURAL NETWORKS

Logistic Regression

Neural Network

Advanced Machine Learning

S EEYE EEEEE
I EIE'E Em

fo(x)
o (Wx + b)
. ' I
|]
l g
1 2
AP) A by e
o (Wyx+by) (WD () + by)

7/163

EXAMPLE: LOGISTIC REGRESSION — NEURAL NETWORKS

Neural Network

(1) (2)
Wi b) (%) W, by fo (%)
o (Wix+bp) o (Wor (D (x) + by)
Input layer x Hidden layer f(V(x) Output layer f?) (%)

Cascade layers for any amount of depth and complexity!

Naive conclusion: deep learning is easy...

Advanced Machine Learning 87163

..DEEP LEARNING IS HARD

e How do I choose [
e How do I choose L, the number of layers?
e How do I choose the activation function o (-)?

sigmoid tanh relu softplus softmax
1 = il
e | e [mae0) [e e |

o Are there other choices to make?
¢ What about overfitting?
¢ Will my optimizer converge?

¢ Is my problem solvable with a particular architecture F?

¢ Can my data be fit by a particular architecture F?

MNIST SVHN

3]q]c]/ I 1R

Deep learning requires engineering skill, statistical thinking, and thoughtful empiricism.

Advanced Machine Learning

9/163

Machine Learning libraries have abstracted {math, stats, optimization, ...} — engineering

T Tensorflow @ theano iocn Caffe

Under the hood are several amazing capabilities. Arguably the two most important:

e Automatic differentiation

In [119): # how to predict label from data
y_model = tf.nn.softmax (tf.matmul(x,W) + b)
f the objective function
cross_ent = tf.reduce mean(-tf.reduce sum(y*tf.log(y model), reduction indices=(1]))
the cost function to be optimized
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_ent)
performance quantification
correct_pred = tf.equal(tf.argmax(y_model,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

¢ Stochastic optimization

In [165]: with tf.Session() as sess:
sess.run(tf.global_ variables initializer())
train model
for i in range(1001):
train_step.run(feed dict={x: X_train, y: y_train})
print diagnostics

To understand modern ML, we need to understand why these work... and when they don’t.

Advanced Machine Learning 107163

TOOLS: AUTOMATIC DIFFERENTIATION

REVISITING TENSORFLOW TUTORIAL

Optimization is central to machine learning
o We seek to minimize empirical risk R(0) = % S L (info(xi)
o We iteratively optimize to find a point 8* where VyR(0)|g+ = 0

e Gradient descent (for some step size ay):

0%+ 9®) — 0, VyR(0)

¢ Note: you will also remember convex optimization and the Hessian Hg. Neural networks
are nonconvex and thus we will largely ignore second order optimization

But no gradients were taken in the tensorflow tutorial!

In [119]: # how to predict label from data
y _model = tf.nn.softmax(tf.matmul(x,W) + b)
the objective function
cross_ent = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_model), reduction_indices=[1]))
the cost function to be optimized
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_ent)
performance quantification
correct_pred = tf.equal(tf.argmax(y_model,l), tf.argmax(y,l))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

Somehow tensorflow took the gradients under the hood

Advanced Machine Learning 163

DIFFERENTIATION

Four ways to take derivatives:
fi(x) = 1282(1 — x)(—8 + 162)(1 — 22)*(1 —

L=z
o manual (calculus) differentiation st =401 =) e At o iyl

F(@) =1 = 642(1-2)(1-22)*(1-82+82°)° | Differentiation (2z)(1— 8 +82?)?

* numerical differentiation

¢ symbolic differentiation Coding

Coding
¢ automatic differentiation w
. £00):

vex 128x(1 -) (-84 16 (1 - 2
fori-ttod X072 (1-8x+8x2)+64

veav-w “0A-202(1-8x+8
. M x2)°2-64x(1-2x)2 (1-8
They are, respectively: or in closed-form, Symbolic x+83°2)2- 26651 -) (4 -

Differentiation 2x)(1-8x+8x72)"2
of the Closed-form|

¢ painful, mistake-prone, not
scalable (cost of a Jacobian?)

17 (x0) =

x):
64x (1-x) (1-2x)"2 (1-8x+8x72)"2

e unstable (floating point), Automatic Numerical
. Differentiation Differentiation
inaccurate
* restricted (to closed form), B o £
3 3 fori=1to3 = 0.000001
unwieldy (expressions) @,v7) = @v(i-v), 4vr-8vv?) GGrw-£@) /h
@,v)

e awesome: general, exact,
particularly well suited to
algorithmic code execution

17 (x0)

[Baydin et al (2015) JMLR... note the for loop!]

Understanding autodiff requires a bit of thinking, but remember, it’s just the chain rule

Advanced Machine Learning

Consider the function y = f(x,x2) = log(x) + x1x3 — sin(xy)
¢ Break down f into its evaluation trace: v_1 = x1,v; = logv_i, ...

¢ List symbolic derivatives for each op in the trace: v; =

¢ Chain rule: recurse through the evaluation trace, numerically calculate (exact!) derivatives

o (——()

f(z1,22)

T2 Yo
U Note: not a neural network.
Forward Primal Trace Forward Tangent (Derivative) Trace
o1 =a1 =2 o1 =1 =1
v =2 =5 vo =2 =0
v =lvy =2 b =bo1/vo =1/2
vz =vaXv =2x5 2 =bvaXvottoxvor =1x5+0x2
v =sinvo =sin5 g = Po X COSV =0xcosb
vi =vitva =0.693+10 Dy =11+ =05+5
vs =vi—vs = 10.693 +0.959 D5 =a— iy =55-0
y =u = 11.652 Yy =15 =5.5

[Baydin et al (2015) JMLR]

Note: it is necessary to execute this forward mode for each input dimension...

Advanced Machine Learning 147163

REVERSE MODE AND NEURAL NETWORKS

Neural Network

J W, fe(l) (x) W, (2) (3) (x)

s (W) (sz“) (x)) (W3f(2))
size: Wi| = do di dr d3
[Freoefen] =[G < [5] %] <[]

i
i
|

d()><d4 d()><d1 d1><d2 d2><d3 d3 ><d4

Computational cost:
o Forward mode: matrix-matrix multiplies O (dod1da + dodads + dodsdy)
e Reverse mode: matrix-vector multiplies O (dadszds + dadids + didodys)
e Butif L is scalar (like a loss function...), then dy = 1!
Backprop is reverse mode autodiff on neural network losses. ds = 1 — very fast and efficient!

Advanced Machine Learning 157163

NOTES ON AUTOMATIC DIFFERENTIATION

Automatic differentiation is a symbolic/numerical hybrid:
¢ Each op in the trace supplies its symbolic gradient (e.g., v; = L%: on earlier slides)

¢ Execution trace (fwd or bkwd) numerically calculates the exact (not numerical!) gradient

Reverse vs Forward mode autodiff
 Reverse mode is better for f : RV — RM for N > M.
« Forward mode is better for f : RV — RM for N < M.

e What are many machine learning problems? What are (most) neural networks?

Does this only apply to neural nets?
¢ Most all modern ML libraries include autodiff; hence the computational graph...
¢ However, not necessary: why not wrap numpy ops with their symbolic gradients?
https : //github.com/HIPS/autograd
Editorial remarks
¢ Audodiff is old and many times reinvented; yes it’s just the chain rule.
¢ Machine learning was embarrassingly slow to adopt autodiff. Now it’s pervasive.

e Can I just forget calculus? No! ...but also (sort of) Yes!

Advanced Machine Learning

16

163

TOOLS: STOCHASTIC OPTIMIZATION

EXAMPLE: LOGISTIC REGRESSION — NEURAL NETWORKS

Logistic Regression

S EN'H s

X w

Neural Network

= -
L]
I. |] -
| n '] I
1
) W, by
o (Wix+by)
x
Concerns:

* Number of parameters |6| and complexity of optimization is growing...

fo(x)

o (Wx + b)

2
19 @)
o (o (D () + by)

« With ‘big data’, at what point will I not be able to reasonably calculate the gradient of the

empirical risk VoR(0) = 1 1 VoL (i, fo(x))?

n

 When will we care about step size oy, in optimization: §*+1) < 9®) — o, VyR(0) ?

Advanced Machine Learning

187163

STOCHASTIC GRADIENT DESCENT

Idea: at each iteration, subsample batches of training data: M random data points x;, , ..., Xi,

M
1
oD o) s D VoL Oinsfo (xiy))

m=1
accuracy

1.00

0.900

0800

0.700

0800

0500

0.400

0300

0.200

0100

DEE

Name Smoothed Value Step Time
fulgrad 0.8915 0.8917 99.00 SunOct29,13:38:09

0.000 1000 20,00 3000 40.00 50.00 60.00 70.00 8000 90.00 100,

sgd10 0.8654 0.9000 98.00 Sun Oct 29,12:22:06
O sgd100 0.8585 0.8700 99.00 Sun Oct 29, 12:21:59

Steps are now less likely to be descent directions, hence noisy... but do we gain anything?

Advanced Machine Learning

19

163

STOCHASTIC GRADIENT DESCENT

The previous optimization paths, scaled by relative time, show major gains!

accuracy

8
8

o 0.001 0002 0003 0.004 0005

Name Smoothed Value

full_grad 0.2617 0.6464
sgd10 0.8065 0.9000
sgd100 0.8783 0.9200 Sun Oct 29, 12:21:59 0s

Stochastic Gradient Descent: optimization with noisy (subsampled) gradient estimators

Note: Properly speaking, SGD is batches of size M = 1; otherwise mini-batch SGD. We will use SGD for both.

Advanced Machine Learning

20

163

STOCHASTIC GRADIENT DESCENT

Some common, intuitive, but rather weak arguments that SGD should work:
¢ Gradients are only locally informative, so needless (early) accuracy is wasteful
o If estimator is unbiased, the stochastic gradient points in the right direction on average

* We ideally seek to minimize true risk £y, ,y (L (y,fo(x))), so already empirical risk
R(6) = % St L (yi,fo(xi)) is a noisy estimator of the true objective

 Injection of noise is likely to kick 6 out of saddle points and sharp local optima
¢ Stochastic gradients may help prevent overfitting to the empirical risk function
¢ Also for discussion: how might batch size help to exploit parallel computation?

The above are roughly correct (or believed so), but careless trust here can be problematic...

Advanced Machine Learning 217163

Use SGD to solve this problem:
e Data {xi,...,x21 } = {—10.0,-9.0,...,0.0, ...,9.0, 10.0}

Loss L (x,‘, fo (x,‘)) = (x,' — 0)2 Note: you should know the answer 6* already

Batch size M = 1 Note: this choice is just for simplifying the explantion
Initialize §° = —20
o Step size oy = 0.5 for all k.

e That is, solve:

21

. 1 1
8" = argmin — > L(xi,fo(xi)) = arg min oo D (- 0)?
i=1

i=1

Result: SGD bounces around and never converges...
mse theta

90.0 2.00
80.0 -2.00
0.0 -6.00
0.00 ‘ -10.0
0000 4000 BO.OO 1200 1800 0000 4000 BOOD 1200 1800

Takeaway: step sizes {ay } matter tremendously.

Advanced Machine Learning 22/163

There is a deep literature on SGD. For our purposes:
* Theory: SGD is provably convergent with a proper choice of schedule {oy},

e In brief: Robbins-Monro says {ay }, must decay quickly, but not too quickly:
Z az < oo and Z Qg = 00
k=1 k=1

1

¢ A good choice: o = T Q0 ...cg = 0.5 or similar; see t £.train. inverse_time_decay ()
mse theta
120 6.00
20.0 2.00
B80.0 -2.00
0.0 -6.00
0.00 10,0
0000 2000 4000 6000 8000 0000 2000 4000 6000 8000

Orange: full batch gradient; Blue: SGD no decay; Red: SGD with decay

SGD is one of the most important enablers of modern machine learning
For those i 1, I strongly reco d [Bottou, Curtis, Nocedal 2017] and the original [Robbins and Monro 1951]

Advanced Machine Learning 23/163

Can we exploit more information to improve stochastic gradient descent?
¢ Yes: numerous advances off SGD exist

¢ No: making rigorous statements about their performance is challenging

¢ Yes: many cutting-edge methods now use these methods in lieu of standard SGD
¢ No: there is some indication that they overfit and that SGD is in fact preferred.

o ...an unresolved and very current debate.

Some repeated themes:
o Momentum (Momentum/NAG): ¢+« 9(k) — () for ;,(0) ﬁu("‘l) + o VgR(0)
¢ Second order approx. (AdaGrad): g+ gk) — Dy VgR(0) for a diagonal matrix Dy

e Gradient-based decay (Adadelta/RMSprop/...): 0*+1 «— 9() — 0, V4 R(9) where ay is
a function of previously calculated gradients (such as inverse average squared norm).
¢ Combinations of above strategies (Adam/...)

Advanced Machine Learning

Adadelta
Rmsprop

7 15
Image 5 SGD optimization on loss surface contours Image 6: SGD optimization on saddle point

image from a blog: http://ruder.io/optimizing-gradient-descent/

24/163

How TO PROCEED

Practical realities:

o All are implemented in tensorflow, so we allow that abstraction.
https://www.tensorflow.org/api_guides/python/train#Optimizers

¢ Try one, tune its hyperparameters, try another, repeat... empiricism matters!

¢ Current wisdom: use Adam or plain old SGD

For more detail:

¢ Use SGD, says a leading researcher in this space (Ben Recht)
https://arxiv.org/pdf/1705.08292.pdf

o A few blogs with heuristic descriptions
http://ruder.io/optimizing-gradient-descent/
https://wiseodd.github.io/techblog/2016/06/22/nn-optimization/

Does this feel abrupt or unsatisfying? It should!
¢ Choosing step sizes and adaptive gradient techniques are unsolved (nonconvex problems!)

¢ SGD is rigorous but sometimes slow
¢ Other methods can be faster but may be problematic in a way we don’t yet understand

¢ Welcome to the cutting edge... this is the “art” (or careful empirical side) of deep learning

Advanced Machine Learning

257163

CONVOLUTIONAL NEURAL NETWORKS I

INFORMATION BOTTLENECKS IN NEURAL NETWORKS

. ' I
|]
! |
1 2
£V W, by)
o (Wix+bp) o (Wor (D (x) + by)

Neural Network

Notice:

o The first layer bottlenecks the 28 x 28 space R78* — R20... loss of expressivity?
e Increasing 20 — 64 would drastically increase |6)|... slow algorithm and overfitting!

¢ ..because every unit sees all input units... that is, Wj is a full matrix

Opportunity:
¢ What dependency does x1 have on x7g4? x2? x29?
¢ Recall (from Part I) that exploiting known (in)dependencies is a good thing
¢ Idea: make linear maps local... and rely on later layers to capture long-range features.

 Exploiting local statistics allows more outputs for the same net |0|!

Advanced Machine Learning 277163

A new view of the same fully connected layer that we have been using:

. . . Output Units (5x5)
¢ Blue: input units (eg 7 X 7 image)

¢ Green: output units (5 X 5 readout)
Input Units (7x7)

o Weight matrix (not shown): R**2> — || = 1225

Local linear filter: consider only a 3 X 3 linear map, and sweep it locally
o New weight matrix: R3*3 — || =9
e > 400X savings in parameters!

« But we have lost expressivity...

Image credit for all of these and the following: https://github.com/vdumoulin/conv_arithmetic

Advanced Machine Learning 28/163

Call this 3 x 3 linear map a filter or convolution

cewe

Now use multiple filters (below K = 4), producing multiple activation maps (each 5 x 5)

Kactivation = g =

Convolutional layer: linear map applied as above; a3 X 3 X 1 X 4 parameter tensor.

Our/tf convention for 2D convolution: filter width X filter height X input depth X output depth.

Advanced Machine Learning 297163

Advanced Machine Learning

Convolutional Neural Network: a neural network with some number
of convolutional layers. The workhorse of modern computer vision.

You should now be able to interpret/implement published models such as:

C1: featu C3: f. maps 16@10x10
: feature maps S4: 1. 16@5x5
6@28x28 maps 16@5x

INPUT
32x32

S2: f. maps
6@14x14

Cor i L i Cor i i Full connection

[LeCun et al 1998]

e What is the filter size from input to C1? 5%5
o What is the size of the weight matrix from S4 to C5? 16 X 5 x 5 X 120 = 48, 000

¢ What is subsampling? It’s now called average pooling. What’s average pooling?

30/163

Note a few potential drawbacks:
o Filtering reduces spatial extent of activation map

« Edge pixels/activations are less frequently seen

* (Note these can also be benefits)

Zero Padding:
¢ Add rows/cols of zeros to the input map, solving both problems
¢ Output activation maps will preserve size when

1
Mpad = E(Mﬁlter - 1)

Note: one can zero-pad more/less/asymetrically/otherwise, with varied problem-specific effects

Advanced Machine Learning 31/163

On the other hand:
o Filtering processes the same information repeatedly

¢ Possibly wasteful if images are quite smooth

ee

¢ Caution! Non-integer results in above will be problematic. Care is required.

-2

Note: striding and zero-padding give design flexibility and balance each other

¢ Could get more activation maps if each was smaller
Stride:
o Jump the filter by some M4, pixels/activations

¢ Output activation map (assuming square) will be of height/width
Minput — Mﬁlter + 2Mpad

+ 1
Miride

Moutpul =

Advanced Machine Learning 32/163

Notice:
¢ Smaller filters process finer features
o Larger filters process broader features
e Common choices: 3 x3, 5x5, 7x7, 1x1

¢ Empiricism dictates which to use (again: the art of deep learning)

2343

Wait! Whatisa 1 x 1 layer? Isn’t that meaningless?

¢ No! Remember, the conv layer is filter width X filter height X input depth X output depth
o Critical: filters always operate on the whole depth of the input activation stack

e 1 X 1 conv layers — dimension reduction: preserve map size, reduce output dimension K

Advanced Machine Learning 33/163

Context
¢ Convolutional layers specify the linear map (and how to calculate it)
¢ An elementwise nonlinearity is still expected to follow
e tf.nn.relu(tf.nn.conv2d(x , W_cnn , strides=[1,2,2,1] , padding='SAME’) + b)

o Compareto tf.nn.relu(tf.matmul(x , W) + b)

Mjy
stride

Note: t £ 7 SAME’ chooses zero padding to satisfy Mo,y = [-| , for stride = [batch, width, height, depth]

Specific example

Questions
¢ What is the filter?
e What is the filter width?
e What is the zero padding?
e What is the stride?

Advanced Machine Learning 347163

Make cnn_cf: a single convolutional layer network with 64 activation maps

In [15]: | # elaborate the compute logits code to include a variety of models
def compute_logits(x, model_type, pkeep):

"""Compute the logits of the model"""

if model_ type=='lr':
W = tf.get_variable('W', shape=[28%28, 10])
b = tf.get variable('b', shape=[10])
logits = tf.add(tf.matmul(x, W), b, name='logits_1lr')

elif model_type=='cnn_cf':
try a 1 layer cnn
nl = 64
x_image = tf.reshape(x, [-1,28,28,1]) # batch, then width, height, channels
cnn layer 1
W_convl = tf.get_ variable('W_convl', shape=[5, 5, 1, nl])
b_convl = tf.get_variable('b_convl', shape=[nl])
h_convl = tf.nn.relu(tf.add(conv(x_image, W_convl), b_convl))
fc layer to logits
h_convl_flat = tf.reshape(h_convl, [-1, 28%28*nl])
W_fcl = tf.get_variable('W_fcl', shape=[28%*28+%nl, 10])
b_fcl = tf.get_variable('b_fcl', shape=[10])
logits = tf.add(tf.matmul(h_convl_flat, W_fcl), b_fcl, name='logits _cnnl')

Note:
¢ This network should be more expressive than logistic regression
o Compare |6| with logistic regression
¢ Draw this network

e Runit...

35/163

Advanced Machine Learning

Warning
¢ The softmax operation should > 0, but numerically can sometimes be ==
¢ log 0 will cause your training to crash with some NaN errors (possibly just in tb)
¢ Numerical stability is always a concern in practical machine learning

¢ Here the problem is readily spotted...

In []: def compute cross_entropy(logits, y):
y_pred = tf.nn.softmax(logits, name='y pred') # the predicted probability for each example.
cross_ent = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_pred), reduction_indices=[1]))

¢ Always use:

® tf.nn.softmax_cross_entropy_with_logits
...orequivalently t f. losses.softmax_cross_entropy
® tf.nn.sparse_softmax_cross_entropy_with_logits

...or equivalently t f. losses.sparse_softmax_cross_entropy
e The former is for one hot encodings; the latter for {1, ..., K} encodings of labels
¢ Never write out the actual cross entropy equation

Fix it. Run it...

Advanced Machine Learning 36/163

CAUTION: CHOICE OF OPTIMIZER

Consider different SGD variants

summaries/accuracy

A\ VaNy

0.100 \iRYad Y

0.000 1000 2000 3000 4000 5000 600.0 7000 800.0 900.0 1.000¢

Name Smoothed Value Step Time Relative
O cnn_cf_adam/test 0.9512 0.9512 1.000k ThuNov2,14:00:29 2m12s

cnn_cf_adam/train 0.9600 0.9600 990.0 ThuNov2 14:00:25 2m11s
cnn_cf_sgd/test 0.09800 0.09800 1.000k Thu Nov2,13:57:47 2m13s
cnn_cf_sgd/train 0.1200 0.1200 970.0 ThuNov2,13:57:41 2m10s

‘We will stick mostly with Adam for remainder, but again, empiricism...

Advanced Machine Learning 3717163

PROGRESS WITH cnn_cf

Training and Test

summaries/accuracy summaries/accuracy

1.02 1.02 }

0.980 0980 | |

0.940 0040 | |

0.900 0.900 ‘

0.860 0.860

0.820 0.820

0.000 2.000k 4.000k 6.000k 8.000k 10.00k 0.000 2000k 4.000k 6.000k 8000k 10.00k

0EE D EC

Name Smoothed Value Step Timg Name Smoothed Value Step Time
O cnn_cf/train 0.9903 1.000 9.980k Thu & cnn_cf/test 0.9862 0.9862 9.900k Thu

Ir/train 0.9251 0.9200 9.980k Thu O Ir/test 0.9243 0.9245 9.900k Thu

Questions
e Why is test/train nonsmooth/smooth?
¢ How do I set up tensorboard summaries for train and test?
¢ Will we do better if we make this network more complicated/deeper?

e Am I concerned by a &~ 0.4% difference between train and test?

Advanced Machine Learning

163

TRICKS OF THE TRADE: POOLING

Idea
¢ Perhaps we care less about the precise location of activations in every layer

¢ And we know that parameters will be creeping upwards with padded layers
e Pooling adds a layer that averages or takes the max of a small window of activations
¢ Note: operates on each activation map individually

Also called subsampling/downsampling (cf [Lecun et al 1998] figure earlier)

Max Pooling (most popular) Average Pooling

Now
o I can reduce the number of parameters without (hopefully) losing much expressivity...

¢ I can increase the expressivity (hopefully) without increasing the number of parameters

Advanced Machine Learning 39/163

Make cnn_cpcpff: conv—pool—conv—pool—fc—fc

elif model_type=='cnn cpcpff':
2 layer cnn, similar architecture to tensorflow's deep mnist tutorial, so you can compare

nl = 32
n2 64
n3 = 1024

x_image = tf.reshape(x, [-1,28,28,1]) # batch, then width, height, channels
cnn layer 1

W_convl = tf.get_variable('W_convl', shape=[5, 5, 1, nl])

b_convl = tf.get variable('b convl', shape=[nl])

h_convl = tf.nn.relu(tf.add(conv(x_image, W_convl), b_convl))

pool 1

h_pooll = maxpool(h_convl)

cnn layer 2

W_conv2 = tf.get variable('W conv2', shape=[5, 5, nl, n2])
b_conv2 tf.get_variable('b_conv2', shape=[n2])

h_conv2 = tf.nn.relu(tf.add(conv(h _pooll, W_conv2), b_conv2))
pool 2

h_pool2 = maxpool(h_conv2)

fc layer to logits (7x7 since 2 rounds of maxpool)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*n2])

W_fcl = tf.get_variable('W_fcl', shape=[7#7*n2, n3])

b_fcl tf.get_variable('b_fcl', shape=[n3])

h_fcl = tf.nn.relu(tf.add(tf.matmul(h_pool2_flat, W_fcl), b_fcl))
one more fc layer

... again, this is the logistic layer with softmax readout
W_fc2 = tf.get_variable('W fc2', shape=[n3,10])

b_fc2 = tf.get_variable('b_fc2', shape=[10])

logits = tf.add(tf.matmul(h_fcl, W_£fc2), b_fc2, name='logits cnn2')

Note:
e Draw this architecture

e Runit...

Advanced Machine Learning 40/ 163

ADDING COMPLEXITY

Training performance

‘summaries/accuracy

I

4,000k 5,000k 6.000¢ 7 8,000k

Name Smoothed Value Time Relative

cnn_cf/train 0.9907 1.000 Thu Nov 2,10:19:23 21m 53s
cnn_cpepff/train 0.9951 1.000 ThuNov2,11:37:30 1h1m 15s
Ir/train 0.9286 0.9500 Thu Nov 2,09:55:36 17s

Worth it?
o Better, but not much better.
¢ More costly

This story will change with more complex datasets...

Advanced Machine Learning 417163

Advanced Machine Learn

IMAGENET

The best large-scale vision dataset available

IM.J"

GENET I e

14,197,122 images, 21841 synsets indexed

Great white shark, white shark, man-eater, man-eating shark,
Carcharodon carcharias 1242

Large aggressive shark widespread in warm seas; known to attack humans pétues poplarty Worcnet

© umbory ket e rumber o Troemap Viuatzation | imagesof the Syset. | Downiosss
ImageNet 2011 Fall Release (32326)
L plant, lora, plan lfe (4486)
geological formation, formation (17
natural object (1112)
spor, athletics (176)
artifact, artefact (10504)
fungus (308)
person, individual, someone, somet.
animal, animate being
invertebrate (766)
- homeotherm, homé
work animal (4)
darter (0)
survivor (0)
imal (0)
creepy-crawy (0)
domestic animal, of
molter, mouter (0) Typical 0] Wrong (0]
, varment (L

mutant (0)
- critter (0)

game (47)

young, offspring (45
okt e 0
herbivore (0)

pecper (0)

Note also that, in many images, bounding boxes are now provided

[z

427163

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)

¢ Annual computer vision challenge

e e.g. ILSVRC 2014 had > IMM
training, 50K validation, 100K test

Multinomial classification K = 1000

Since 2012, dominated by CNNs of
increasing complexity

¢ Human performance surpassed in 2015

¢ Not without controversy...

Advanced Machine Learning

Top-1 accuracy (%]

2
3

3

2
&

BN-AlexNet
55 AlexNet
50

152 layers
\\
1.7

. I"‘"I 8 layers \ shallnm
ILSVRC'15 ILSVRC'14 lLSVHC‘ll ILSVRC'13 II.SVRC 12 ILSVRC'11 ILSV'RCIO
ResNet GoogleNet
ImageNet Classification top-5 error (%)
[Kaiming He]

Inception-v4

Inception-v3 '

ResNet-50
54

ﬂ ResNet-18

© BN-NIN

ResNet-152
VGG-16 VGG-19

ResNet-101
ResNet-34

GoogLeNet

0

5 10 15 20 25 30 35 40
Operations [G-Ops]

[Canziani et al 2017]

437163

The first ILSVRC winner with deep learning

Max Max
pooling pooling

‘We can understand the entirety of this network

‘Advanced Machine Learning

128 Max
pooling

2048 ' 2028 \dense

2048 2048

[Krizhevsky et al 2012]

447163

TRICKS OF THE TRADE: DROPOUT

Advanced

With increasing complexity comes increasing overfitting. Let’s regularize!

(a) Standard Neural Net

Present with
probability p
(a) At training time

This widely used strategy is dropout

Machine Learning

(b) After applying dropout.

W
Always
present

(b) At test time

[Srivastava et al 2014]

45/163

TRICKS OF THE TRADE: DROPOUT

Add a dropout layer: conv—pool—conv—pool—fc—drop—fc

summaries/accuracy

1.01

1.00
0.890
0.980
0870
0.960
0.850
0.940
0.830

0.820

0.000 1.000k 2.000k 3.000k

Smoothed Value Step Time

o cnn_cf/train 0.9908 1.000 9.990k Thu Nov2,10:19:23
cnn_cpepfdf/train 0.9958 1.000 9.990k ThuNov2,1
cnn_cpepff/train 0.9947 1.000 9.990k ThuNov2,1

Does not seem to affect training much...

Advanced Machine Learning

AR

6.000k 7.000k 8.000k 9.000k 10.00k

46

163

TRICKS OF THE TRADE: DROPOUT

But hopefully it mitigates overfitting
summaries/accuracy

1.00
0.990
0.980
0.970
0.960
0.950
0.940
0.930

0.820

0.000 1.000k 2.000k 3.000k 4.000k 5.000k 6.000< 7.000 8.000k 9.000k 10.00k

1]
g

Name Smoothed Value Step Time Relative
cnn_cf/test 0.9862 0.9862 9.900k ThuNov2,10:19:14 21m41s

cnn_cpcpfdf/test 0.9916 0.9916 10.00k ThuNov2,13:29:19 1h6m 39s
cnn_cpepff/test 0.9894 0.9894 10.00k ThuNov2,11:37:44 1h1m21s

Discuss... again, we expect this to matter more in more complex networks

Advanced Machine Learning 4771163

Dropout has become standard practice in modern network design

ut.

W

ithout dropo

600000 800000 1000000
Number of weight updates

400000

200000

5

2.0

% 0413 uopedyisse|d

0

[Srivastava et al 2014]

487163

‘Advanced Machine Learning

Play with the architectures and choices we have made so far.
Experience is the only way to improve your deep learning skills.

Some ideas:
¢ Change the filters: sizes, striding, padding
¢ Change the pooling: average/max, different sizes, different positions
¢ Change the architecture
¢ Change the optimization method
¢ Change the batch size

¢ Change the summary/tensorboard content

Advanced Machine Learning 49/163

2014 ILSVRC winner added yet more complexity... Idea:
¢ Build a useful block or module of layers

¢ Layer those modules together

Inception module

Filter
Filter concatenation
concatenation

1
\

1x1 ‘

‘ 3x3 max pooling

1x1 convolutions 1x1 convolutions
(a) Inception module, naive version (b) Inception module with dimension reductions
[Szegedy et al 2014]

Reminder: 1 X 1 layers operate on the whole depth; act as dimension reduction

‘Advanced Machine Learning 507163

Full network

[Szegedy et al 2014]

Notice auxiliary classifiers
¢ Concern: gradient info does not propagate deep into the network
¢ Not overfitting!

e A nice trick, but there is another that we will soon see

‘Advanced Machine Learning 517163

INCEPTION

Another view

‘ type ‘ pa;:"“_;:w ‘ Te“‘ ‘ depth ‘ #1x1 ii:cf ‘ #3x3 ‘ ﬁ::cz | #5%5 ‘ :‘:"; ‘ params ‘ ops
convolution TXT/2 112x112X64 1 27K 34M
‘max pool 3x3/2 56X 56X 64 0
convolution 3x3/1 56x56x 192 2 64 192 112K 360M
max pool 3x3/2 28x28x192 0
inception (3a) 28X 28X 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x28x480 2 128 128 192 32 96 64 380K 304M
‘max pool 3x3/2 14X 14X 480 0
inception (4a) 14X 14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14X14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14X 14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14X 14x528 2 112 144 288 32 64 64 580K 119M
inception (4¢) 14X 14X 832 2 256 160 320 32 128 128 840K 170M
‘max pool 3x3/2 TX7x832 0
inception (5a) TXTx832 2 256 160 320 32 128 128 1072K 54M
inception (5b) 7TXT7x1024 2 384 192 384 48 128 128 1388K | 7IM
avg pool 7X7/1 1x1x1024 0
dropout (40%) 1x1x1024 0
linear 1x1x1000 1 1000K M
softmax 1x1x1000 0

[Szegedy et al 2014]

More complex, but still components we understand.

Advanced Machine Learning

163

Networks are trained for a specific task, but we suspect they also learn some useful concepts

i E
7 3[4 i
N

Max 128 Max pooling
pooling pooling

[Krizhevsky et al 2012]

[Szegedy et al 2014]]

Idea: exploit a large pre-trained network to solve your problem...

Advanced Machine Learning 53/163

2015 ILSVRC winner:
¢ added (vastly) more depth to the network
¢ successfully trained with one key idea
¢ surpassed human level performance

¢ did so with reasonably fewer parameters

152 layers
'y
\
‘\
ll.
_ ET)

ﬁ I‘ o I 8layers smunw
ILSVRC1S ILSVRC14 ILSVAC14 NSVRC13 ILSVRC12 ILSVRC'11 nsvncm
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

‘Advanced Machine Learning

Top-1 accuracy [%]

Inception-v4
Inception-v3 . ‘ Reset-152
75 JResNet-50 VGG-16 VGG-19
ResNet-101 >
' ResNet-34.
04 & resi
o0 oogLeNet
ENet
65
© BN-NIN
N-AlexNet
55 lexet
o 5) g 20 25 30 3 40

Operations [G-Ops]

[Kaiming He], [Canziani et al 2017]

547163

PROBLEMS WTH DEPTH

Exploding and vanishing gradients were a major historical problem for deep networks

¢ Chain rule has multiplicative terms, nonlinearities can saturate, etc.

o Normalization layers have been widely used to mitigate. Two popular strategies:

¢ Local response norm.: divide unit activation by sum of squares of local neighbors

[Krizhevsky et al 2012]

¢ Batch norm.: standardize all units across the minibatch to a learned mean and var.
[Toffe and Szegedy 2015]

¢ Normalization is an important trick of the trade (as common as dropout and pooling)

Degradation has been another key roadblock to increasing depth

56-layer

Notice:

e Training error increasing with increasing depth... not overfitting!

» Not an issue with the function family, since Fp9 C Fs¢

8

S

5

E

D 10~

Eﬂ 56-layer
g

5]

8 20-layer

test error (%)

20-layer

6

2 3 g
iter. (1e4)

¢ Cause is optimization practicalities...

Advanced Machine L

earning

2 3 g
iter. (le4)

[He et al 2015]

557163

Key idea: layers learn residuals x!*! — x? rather than the signal x¢* itself:

weight layer

X
identity

uieid sokel-pg

lenpisa sohel-vE

Resulting world leading performance, with many follow-on variations (layer dropout, e.g.)
[He et al 2015]

Advanced Machine Learning 56/163

DEEP LEARNING REALITIES

MNIST — SVHN

Consider the same digit classification problem on (seemingly) similar data

MNIST SVHN

BEEAn mrin

Questions:
o If 7 was well chosen on MNIST, will it work well on SVHN?

o If yes, what does that mean?

¢ If no, what do we have to change to make it work?

¢ Key takeaway today: answering these questions is critical, hard, and very empirical

¢ We will go through a number of steps/lessons

Advanced Machine Learning 587163

1. DATA

Input layer: three maps of size 32 x 32
[32x32x3] = [32x32x1] [32x32x1] [32x32x1]

¢ Check data to make sure it follows the labeling format you want (hint: it doesn’t)
e Careful about reshaping in CNNs
e tf takes data from the first index of the input; is that an image?

4 x_re = X_train[:,:,:,batch].reshape([np.shape(batch)[0],-1])

tf will then take this data one at a time from the first index.

xim = x_re[0,:]

7 # let us reshape and plot that to make sure it is correct

plot_save(xim.reshape([32,32,3]), 'svhn _c3')

ugh that is not right...

10 # so we need to thoughtfully permute the indices of the tensor. Get used to this and be careful.
plot_save(X_train[:,:,:,batch].transpose([3,0,1,2]).reshape([np.shape(batch)[0],-1])[0,:].reshape([32,32,3]),

better...

Run a simple model to get started...

Advanced Machine Learning 5917163

=STT317 Options, run metadata)
1318 else:
1319 return self. do_call(_prun_fn, self. session, handle, feeds, fetches)

~/anaconda/envs/aml_sandbox/1ib/python3.6/site-packages/tensorflow/python/client/session.py in _do_

gs)
1334 except KeyError:
1335 pass

-> 1336 raise type(e)(node_def, op, message)
1337

1338 def _extend graph(self):

InvalidArgumentError: Nan in summary histogram for: summaries/logits
[[Node: summaries/logits = HistogramSummary[T=DT_FLOAT, _device="/job:localhost/replica:0,
0"](summaries/logits/tag, model/logits_cnn_cf)]]

Caused by op 'summaries/logits', defined at:
File "/Users/jpc/anaconda/envs/aml_sandbox/lib/python3.6/runpy.py", line 193, in _run module_as_p

*_main__ ", mod_spec)
File "/Users/ipc/anaconda/envs/aml sandbox/lib/pvthon3.6/runpv.pv", line 85, in run code
Reminder!

¢ Be careful of numerical underflow and overflow; things like log O will crash your code
with NaN errors (possibly just in tb)

¢ Numerical stability is always a concern in practical machine learning
¢ Again, always use:

® tf.nn.softmax_cross_entropy_with_logits
¢ similar numerically safe functions when in a related situation.

Fix it. Run it...

Advanced Machine Learning 60/163

3. LOGISTIC REGRESSION AND BASIC DEBUGGING

Start with logistic regression and SGD

summaries/accuracy summaries/loss
| 1
|
1.00 BT (R} I
6.000e+6 O UL LM 1‘-
0.800 IR L L Wiy
0.600 4000046 ||
0400 2.0000+6
0200
v AL A
r v 000 —
0.000 4.000k 8.000k 12.00k 16.00k 20.00k 0000 6000k 1200k 18.00k

Name Smoothed Value Step Time Relative
@ Ir_sgd_ms0/train 0.1547 0.1500 19.90k Tue Nov7,16:05:04 1m 38s

Ir_sgd_ms0/val 0.1069 0.1054 19.90k Tue Nov7,16:05:05 1m 38s

tb helps, but basic debugging is still useful

Step 200: training accuracy 0.1270
sample pred: (22222222
3

222222222222)
sample true: [19232593313328744128)
correct predictions by class: [0 0125 0 0 0 0 0 0 2
Step 200: val accuracy 0.1328
Step 300: training accuracy 0.0600
sample pred: (0 0000000000000000000)]
sample true: [19232593313328744128]
correct predictions by class: [60 0 0 0 0 0 0 0 0 0]
Step 300: val accuracy 0.0652
Step 400: training accuracy 0.2060
sample pred: [11111111111111111111)
sample true: [19232593313328744128]
correct predictions by class: [0201 0 0 0 5 0 0 0 0

Step 400: val accuracy 0.1876

Not learning...

Advanced Machine Learning 61/163

4. CHOOSING AN OPTIMIZER

Switching from SGD to Adam has helped before; we’ll also try RMSProp

summaries/accuracy summaries/loss

0.200 1.000e+4
0.100 100
0.00 ‘ -1.000e+4

0.000 6.000k 12.00k 18.00k

Name Smoothed Value Time Relative
Ir_adam_ms0/train 0.1824 0.1900 Tue Nov 7,16:07:24 1m 39s
Ir_adam_ms0/val 0.1396 0.1402 Tue Nov 7,16:07:25 1m 39s

Ir_rms_ms0/train ~ 0.1339 0.2200 TueNov 7,1 :43 1m 33s
. Ir_rms_ms0/val 0.1479 0.1342 Tue Nov7,16:10:43 1m 33s
. Ir_sgd_ms0/train 0.1547 0.1500 Tue Nov 7,16:05:04 1m 38s
O Ir_sgd_ms0/val 0.1069 0.1054 Tue Nov 7, 16:05:05 1m 38s

Performance is still terrible, but at least the loss function is not pathological. Progress...

Advanced Machine Learning 62

163

5. MEAN SUBTRACTION

Observation

¢ SVHN data has very different illumination/brightness

¢ Precondition via mean subtraction of each channel?

Progress! Preprocessing data matters... do not rely on the neural net to do all the work

Advanced Machine I

earning

summaries/accuracy

0.400

0.000 4.000k 8.000k 12.00k 16.00k 20.00k

Name Smoothed Value

Ir_adam_ms0/train 0.1824

Ir_adam_ms0/val 0.1396
Ir_adam_ms1/train 0.2566
Ir_adam_ms1/val 0.2733

0.1900
0.1402
0.2300
0.2744

summaries/loss

0.000 4.000k 8.000k 12.00k

Relative
1m 39s
1m 39s
4m 2s
4m 2s

16.00k 20.00k

63

163

Look at the histograms of logits over time to choose which one is learning.

summaries/logits

5000

15000

summaries/logits

Ir_adam_ms0/train

5000

15000

-400 0 400 800 1,200

‘Advanced Machine Learning

summaries/logits

5000

15000

-25,000,0605,000,0065,000,0006,000,0001 5,000,000

ra
La

summaries/logits

Ir_rms_ms0/train

5000

- 15000
e ————————

0 200,000 400,000 600,000 800,000

64/163

7. ADDING COMPLEXITY

Add cnn_cf: conv— fcand cnn_cnf: conv— norm — fc

summaries/accuracy summaries/loss
1.00 }
i Ao Ao At "
0.800 || LM AETRIN 2,00 TM’\‘:’MVA\F'&%» N a A
0.600
0.400 || 1 : 100 \
A » ol A A M/ Vsl L
0500 \;N,{\;»,v—wnu\«”‘/ WA MMM A Mot Y e
0.00 [000
’ [

0.000 4.000k 8.000k 12.00k 16.00k 20.00k 0.000 4.000k 8.000k 12.00k 16.00k 20.00k

]

Name Smoothed Value Step Time Relative
cnn_cf_adam_ms1/train 0.9040 0.8900 19.90k Tue Nov7,15:52:07 1h31m1s

£
]

cnn_cnf_adam_ms1/train 0.9048 0.8700 19.90k Tue Nov7,10:28:58 3h14m9s
Ir_adam_ms1/train 0.2566 0.2300 19.90k Tue Nov7,14:17:56 4m 2s

Advanced Machine Learning 65/163

7. ADDING COMPLEXITY

Add cnn_cpncpnff: conv—pool—norm— conv—pool—norm—fc—fc

summaries/accuracy

/,-N"W

Y4

0.000 2,000k 4.000k 6.000k 8.000k 10.00k 12.00k

Name Smoothed Value Step Time

cnn_cf_adam_ms1/train 0.9098 0.8900 19.90k Tue Nov 7, 15:52:07

cnn_cnf_adam_ms1/train 0.9065 0.8700 19.90k Tue Nov 7, 10:28:58
cnn_cpnepnff_adam_ms1/train 0.9958 0.9900 20.00k Tue Nov 7, 02:41:30

Training performance is very high. Overfitting?

Advanced Machine Learning

e A cvedl

20.00k

66

163

8. VALIDATION DATA

A separate validation set:
¢ helps monitor training
¢ avoids data snooping (overfitting to the test set)

e clarifies overfitting (substantial here!)

summaries/accuracy

1.00 } 1.00
0500 \ 0.800
\ 0.600

0.800 ‘ 0.400
} 0.200

0700 ‘ 0.00

0.000 4.000k 8000k 12.00k 16.00k 20.00k

0EE O

Name Smoothed Value Step
0.9065 0.8700
0.8540 0.8528
0.9900

0.9000

cnn_cnf_adam_ms1/train

O cnn_cnf_adam_ms1/val
cnn_cpnepnff_adam_ms1/train 0.9958
0.8990

cnn_cpncpnff_adam_ms1/val

Advanced Machine Learning

summaries/loss

19.90k
19.90k
20.00k
20.00k

0.000 4.000k 8.000k 12.00k 16.00k 20.00k

Time

Tue Nov 7, 10:28:58
Tue Nov 7, 10:29:11
Tue Nov 7, 02:41:30
Tue Nov 7, 02:41:41

Relative
3h 14m 9s
3h14m 12s
3h 30m 23s
3h 30m 23s

67/163

9. DROPOUT

Add a dropout layer to regularize

summaries/accuracy summaries/loss
0.800
0.950 0.600
0.400
0.850
0.200
0.750 0.00 |
0.000 4.000k 8.000k 12.00k 16.00k 20.00k 0.000 4.000k 8.000k 12.00k 16.00k 20.00k
D EO D EO

Name Smoothed Value Step Time Relative
cnn_cpncpnfdf_adam_ms1/train 0.9752 0.9700 20.00k Tue Nov7,22:38:31 3h30m 47s
cnn_cpncpnfdf_adam_ms1/val 0.9146 0.9148 20.00k Tue Nov 7,22:38:42 3h 30m 46s

cnn_cpncpnff_adam_ms1/train 0.9956 0.9900 20.00k Tue Nov7,02:41:30 3h30m 23s
O cnn_cpncpnff_adam_ms1/val 0.8989 0.9000 20.00k Tue Nov7,02:41:41 3h30m 23s

Advanced Machine Learning

68/163

10. HYPERPARAMETER SEARCH

To further improve performance, carefully search the free (hyper)parameters:
¢ Change the filters
¢ Change the architecture
¢ Change the optimization method
¢ Change the parameters of those methods (Adam learning rate, dropout prob, etc.)
¢ Scrutinize mislabels to look for patterns

¢ Be mindful of overfitting, including overfitting to your validation set

Excellence in deep learning comes from experience and empiricism.

Tools and tricks at your disposal:
¢ Convolutional layers: filter size, zero padding, striding
¢ Optimization: SGD, Adam, RMSProp, etc.
¢ Intermediate layers: pooling, dropout, normalization

¢ Monitoring: validation data, tensorboard, classic debugging

Advanced Machine Learning 69163

SUMMARIZING CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks are the power beind modern computer vision
¢ The idea of a convolution saves parameters and exploits knowledge of local statistics
¢ In challenging datasets, CNNs produce excellent results
o They require much care and attention to be performant
o Deeper networks can achieve superhuman classification performance

o A particular architecture can be (very) problem specific

Max T2 Max
pooling pooling

Discuss: is this general/full Al or weak/narrow/applied AI?
¢ Have we solved digit recognition, or simply MNIST and SVHN (separately)?
¢ How much more general is the problem of full computer vision?

¢ What about object recognition, multi-object tracking, video, prediction, etc.?

Advanced Machine Learning 707163

REINFORCEMENT LEARNING

TRANSITION TO RL

[PECEWEY]

25 ﬂ"ﬂ

Supervised learning

is learning a relationship between iid input-output pairs

relies on training data: examples of correct situations (e.g. an input image) along with the
correct action (e.g. output the label ‘3°)

depends on this data being representative of all possible scenarios

uses instructive feedback: it indicates the correct action regardless of what action is taken

Reinforcement learning

Advanced Machine I

is learning how to map an input situation into an output action to maximize reward
relies on interaction: actions must explore possible actions, searching for good behavior
operates where all possible scenarios can not reasonably be captured by training data

uses evaluative feedback: training information evaluates value of actions taken

earning

721163

REINFORCEMENT LEARNING

Reinforcement Learning is the study of problems that can be characterized by...

Agent l

y Y

state reward action
s || A
R
<Sa Environment |¢———
\
...an Agent...

o takes action A; at time ¢
e receives reward R,
e observes state Sy
...Interacting with an environment.

o affected by actions A;

¢ produces rewards R;
¢ updates its state S; based on the agent’s actions

Advanced Machine Learning

REINFORCEMENT LEARNING

Reinforcement Learning is the study of problems that can be characterized by...

state

Note

A |

vy Y

reward
R t
R

gent !

< Seat

Environment

-

action
A,

« behavior will amount to a policy m(als): the probability of taking action a when in state s

state can be unchanging (this lecture), fully observed (next lectures), partially observed

¢ decision-making agent interacts with environment to achieve a goal (e.g. max reward)

o usually RL agents have to operate in presence of major uncertainty

¢ correct actions require planning and understanding future consequences of present action

Advanced Machine Learning

74/ 163

EXAMPLE: CART POLE

state reward action
S| | R A,

R
S| Environment |<—

o State S; = [x, X, 0, 49'1], the position/velocity of cart; angle/velocity of pole
e Reward R, = +1if 0 € [7/2 — a, 7/2 +], R, = 0 otherwise

Example choices:

e Action A; = {<—, —}; move cart left or right
¢ Goal: maximize total reward
Note:
¢ The agent knows nothing more about the environment (no physics, no experience, ...)
» We might hand pick a policy: m(als) =<« if > 7/2... but it won’t work well
¢ Learning to balance the pole requires understanding long(ish) range consequences

¢ To explore new possibilities, agent must sometimes try unlikely (in 7) actions...

Advanced Machine Learning 57163

EXAMPLE: MS PACMAN

Advanced

state reward
S, R,

Ry

Set
<

Example choices:

Environment [¢—

action
A,

o State S; = [/, dl, x5, d%, ...], position/direction of you, ghosts, pips, fruits, etc...
e Reward R, € {+10, 4100, —1000, 0} for pip, ghost, loss of life, doing nothing
e Action A; = {+, —, 7T, }; move Ms PacMan

e Goal: maximize total reward
Note:

¢ Many possible states can result in different problem difficulty

¢ Rewards can also be designed/mapped to features: score board vs loss of life (if multiple)

¢ How to balance short term rewards (pips) with big wins (ghosts, not dying,...)?

+ How might you balance being greedy about things you know, vs learning new things?

Machine Learning

761163

\ 4

state reward
S, R,

R

Sit

Example choices:

<

o State S; = food availability/freshness, appetite, dishes, etc...

¢ Reward R; involves speed, quality, spills, expense, satiety, hunger, etc...

e Action A, of multiple steps involving delay/planning/experience.

e Goal: maximize total reward
Note:

¢ When/how often should you try cooking something new?

¢ When/how often should you do what you know works?

Advanced Machine Learning

action

771163

The previous examples point to exploration / exploitation
¢ a fundamental concept in reinforcement learning
o recall that operating under uncertainty is fundamental to RL
¢ Any notion of “best action” is really only “best given what I know so far”

¢ A random or believed-suboptimal action may underperform, but it should teach us
something

A fundamental tradeoff/conflict
¢ Exploitation accrues more near-term reward, but learns little new

¢ Exploration sacrifices short-term reward, but accrues information

[from http://slides.com/ericmoura]

Advanced Machine Learning 781163

THE MULTI-ARMED BANDIT PROBLEM

To elucidate the exploration/exploitation tradeoff, we consider the multi-armed bandit problem

reward

R, A

i R,
’ Environment [¢——

You face K slot machines (used to be called one-armed bandits, hence...)

You choose which slot machine to play: action a; = k

Rewards payoff with parameter wy, ..., pix; eg: re|la; = k ~ Bern(uy) or ~ N (g, 1)
The probabilities are unknown; you must discover them through your action sequence
This is a fixed-state (or nonassociative) RL problem: actions don’t change environment
You have to find the best machine, and play it enough to accrue max reward

(not just a thought experiment: think A/B testing on an ecommerce site)

Note there is a big literature on bandits: different rewards, dueling bandits, contextual bandits,
adversarial bandits, etc. Here we deal only with the simplest case.

Advanced Machine I

earning

action

7917163

DEFINITIONS

We are interested in accruing maximum reward. Some important definitions:
¢ Define reward r; and action a; as previous.
« Define value function q(a; = k) = E(r¢|a; = k): expected reward for playing machine k
 Define optimal sequence (theoretical, not achievable) as max, g(a)

o We then equivalently attempt to minimize regret:
L(T) = Zmdxq <Zq a,))

¢ ..how much we regret our sequence of actions, if we later learned the best choice.

Strategies:

* Greedy: only exploit, pick py, what you believe to be the best so far
L(I)=T (mfix M — u,;) linear regret in 7'!
¢ Random: only explore, pick at random
1
L(T)=T (ml'?x Pk — X (1 4+ .. + ux)) linear regret in T'!

We hope to achieve sublinear regret with more sensible policies 7 (a)

Advanced Machine Learning

80/163

e-greedy policy is a simple mixture of greedy and random:
4 — J Argmaxg Q(a; = k) with probability 1 — e
"7 Yk~ Unif(1,...,K) with probability ¢
Value function Q(a;) estimates true action value g(a; = k) = E(r:|a; = k). Update:
1 , 1 &
Qar = k) + Q(ar = k) + — (rr — Q(ar = k)) or equivalently, + — Z Ti
Nk ng “
i=1

learning the action-value function g...
Consider the following 10-armed case with Gaussian bandits r;|a; = k ~ N (p, 1)

3
2
1+(3))
; ’ 0.5)
4.(9);
Reward Feof | "_(4_ B e -
distribution (0
4.(10)
4.(2)
4 4.(9)

4.(6)

[Sutton and Barto... note they use g (k), not 1]

Advanced Machine Learning 81/163

Performance improves over greedy approach...

15

Average
reward

% 60%
Optimal
action 40%

£=0 (greedy)

8
£
b
g

£=0 (greedy)

B
g
3
g

[Sutton and Barto]

Better, but still linear regret (and € depends on uncertainty/variance in the problem)

Advanced Machine Learning

82/163

UPPER CONFIDENCE BOUND

e-greedy exploits well (1 — e of the time), but explores randomly. Suppose instead:
e we maintain a confidence interval on each p
« we already have “posterior” mean Q(a; = k); define confidence interval as o (a, = k)
¢ Explore arms where there is reasonable probability of a higher value

¢ Using our posterior belief, we select (for some constant c)

K= arg max (Q(ar = k) + co(a; = k))

o if 7 is large, confidence should be high — greedy exploitation

if ¢ is small, confidence low — exploration

¢ We call such methods UCB, and they require an estimate of confidence. Good choice:

It
k* = arg max (Q(a, =k)+ ¢y | 0gt>
k Ny

ucB c=2 "
el
o

A
H

Average
reward

UCB achieves log(T) regret, there is a
great deal known about it theoretically, and
it generalizes well

[Sutton and Barto]

Advanced Machine Learning 83

THOMPSON SAMPLING

Consider the K Bernoulli bandits problem:
e rilar = k ~ Bern(py)
¢ Setup otherwise identical to previous. Recall Bayesian modeling and conjugacy
e Our prior (uninformed/uniform) belief is i ~ Beta(1,1). Recall:

Fla+8) oo B—1
p() = ot D) et)
L(@)T'(8)
¢ Each observation updates beliefs easily with Beta-Bernoulli conjugacy:
plnd, nk ~ Beta (l +nb 14 ng)
Thompson sampling:

o Initialize all arms with p ~ Bera(1, 1)
e At time 7, sample s;(k) ~ Beta (l + n,'{, 1+ ng)
e Play k* = arg maxy s(k)
o Update n,l 1 ng 1 based on ry

Thompson sampling achieves log(T')

regret, outperforms many methods in

practice, and generalizes to several settings / —Thompson
i

---ucB1
e-greedy 0.1
e-greedy 0.2

[Xu et al 2013; reward % vs time]
Advanced Machine Learning 847163

RECAP

Reinforcement Learning is the study of problems that can be characterized by...

A entI

|ngent)

y Y

state reward

action
S, | IR A,
R (

< Environment |€¢——

e Actions: agent takes action A; at time ¢
e Rewards: agent/environment receives/produces reward R,
o State: environment updates state S; (fixed in multi-armed bandit)
We choose/learn/design a policy 7(als), such as (in the bandit problem):
arg max, Q(a; = k) with probability 1 — €
ar =
"7 Yk~ Unif(1,...,K) with probability ¢
Recall (in the bandit case) the action-value function Q(a; = k) = g(a,

=k) =E(r|a; =k)
Advanced Machine Learning

85/163

FROM BANDITS TO MARKOV DECISION PROCESS

What if the state changes based on our actions?

¢ Now our experience flows as:

So,40,Ro, S1,A1,R1,82,A2,Ra, ...

L . . S R,
o and the reward distribution (and action-value ' '

state reward

R..

function...) should now depend on state

S.. | Environment |4——

A Markov Decision Process (MDP) is defined by:

p(s' rls,a) 2 p (Sep1 =", R = r|S; = 5,A = a)

Recall Markov property p(S;|Si—1, ..., S1) = p(S:|Si—1)

o future and past are conditionally independent, given the present.

o If I tell you where I am now, the history of how I got here is irrelevant.

¢ Markovity is not a “without loss of generality statement”... we are

simplifying/approximating (but r-Markov can mitigate)

¢ MDP can be viewed as a collection of action-switched Markov chains on states (a tensor)

Advanced Machine Learning

action

A

86

163

The MDP equation (in discrete setting, for clarity):
(s’ rls,a) £ P (Sip1 =5, R = r|S; = 5,A = a)

¢ State transition probabilities

p(s'ls,a) =P (St =5'|Si = 5,Ar =a) = Zp(s’, rls, a)
r

...marginalizing over reward distribution

¢ Reward expectation
r(s,a) £ E(R|S; = 5,A; = a) = Z er(s', rls, a)
r s/

...marginalizing over destination state, expecting over reward

¢ And more...

MDPs offer a highly successful framework for many reinforcement learning problems.

Advanced Machine Learning 871163

Desire to “maximize reward” now needs more detail... we define return G;:
« GG2R +Ry1+...+Rr or G 2R +Ry+ "/2Rt+2 + ...
o Discount factor y prioritizes near term rewards

¢ Generally: G; = ZI{:O YR+ and note: G, = R, + vG,11

Now we can define the central functions that help us understand the value of states and actions:

o state-value function for all states s:
v (s) £ Ex (G|S; = 5) (Z’y Riyk|Si = s)
k=0
e action-value function for all state-action pairs (s, a)
T
g (s, a) Ex (Gi|S: = s,Ar = a) <Z 'ykR,+k|S, =s5,Ar = a)
k=0
Note

¢ value functions depend on a policy 7

¢ Better policies increase value...

Advanced Machine Learning 88/163

EXAMPLE: GRIDWORLD

A B\ 3.3/ 8.8/ 4.4/5.3|1.5
+5 1.5(8.0/2.3/1.9/0.5
+10) B' 0.1]0.7/ 0.7/ 0.4|-0.4
-1.0/-0.4/-0.4/-0.6-1.2
Actions
A 1.9-1.3-1.2-1.4-2.0
Si—1 if A; would leave grid —1.0 if A; would leave grid
A ifS,_; ==A +10.0 ifS_; ==A
S = , . R = .
B ifS,_, ==B +5.0 ifS,_; ==B
Si—1+A; else 0.0 else

Consider a random policy 7 (als) = Unif (+, —, T,), with discount v = 0.9
1 1
vr(s = A) = 10.0 + 0.9 (Z (=1.0+0.9(.)) + 7 (0.0+0.9(.)) +)

o The Bellman equation recursively defines the value function:
va(s) = Y w(als)p(s’, rls, a) (r+yva(s’))
a,s’,r
¢ Bellman equations are central to RL but not entirely needed for our purposes.
o Takeaway: v (s) is a solution to some linear equations

Advanced Machine Learning

897163

POLICY ITERATION

Key conceptual points:
e A policy 7 induces value functions v (s) and g (s, @)
¢ The value functions capture our expected return — the objective of the RL problem
¢ Tools like the Bellman equation (in some settings) let us calculate the value functions
¢ Improving the policy should increase value...

Consider the action-value function:
T

117r(sva) =Ex (ZWer+k|St =s5,Ar = a> =Ex (Rt + WVW(Sr+1)|St =s5,Ar = a)
k=0

The policy improvement theorem says:
o for deterministic policies 7 : S — A (simpler than the usual 7 (als))

e if 37/, 7 such that for all s
qs, @ (5)) > va(s)

e then 7’ is a better policy than 7 in the sense that:
Ve (8) > ve(s) Vs
Notice that a greedy policy 7’ (s) = arg max, g« (s, a) by definition will satisfy! Thus:
¢ Policy improvement is reasonably straightforward (greedy, e-greedy,...)
« Policy evaluation (calculating v (s)) is necessary in this framework
o Iterating between these two is policy iteration

Advanced Machine Learning

90/163

OPTIMALITY

Policy iteration will result in an optimal value function v

Al By 22.0/24.4122.0{19.4/17.5 — b — b
\ +5 19.8/22.0{19.817.8/16.0 FE I o e P
+10) B' 17.8/19.8/17.8/16.0(14.4 L P O L ¢
/ 16.0{17.8[16.0/14.4/13.0 L I O A A

G 14.4/16.0|14.4[13.0/11.7 L O D D

Gridworld Vx Ty

¢ The value functions will satisfy Bellman optimality

ve(s) = max g (s,a) = max Zp(s’, rls,a) (r + v« (s"))

s r

S (s rls, a) (rﬂmexq*(sza'))
a

s’ ,r

qx(s,a)

o Extracting 7* from v.: search over states, choose action to get there.
o Extracting 7* from g« (s, a): search over actions, choose max.

¢ The point: we have means to increase value via our policy — solving RL

Unfortunately, calculating v is only possible in simplistic (known) cases, so much work to do...

Advanced Machine Learning

91

LEARNING v, (S) WITH TEMPORAL DIFFERENCES

Temporal Difference (TD) learning
e We seek to learn v (s) in an online fashion while acting according to policy 7(als)
» Suppose we have an estimator V. (s) of the value function
o Define the TD error as the difference between what you received/anticipated:
8 =ri+vV(sir1) — Vist)
¢ Update your estimate with that error signal (and step size «):

V(s) < V(s:) + ady

45
actual
outcome

Elapsed Time Predicted Predicted 40

State (minutes) Time to Go Total Time

leaving office, friday at 6 0 30 30 35

reach car, raining 5 35 40

exiting highway 20 15 35 I

2ndary road, behind truck 30 10 40

entering home street 4 3 43 gt g 2y one ke
arrive home 43 0 43 Situation

TD learning on v:
o is prediction without a model: give me a policy and I'll tell you its value
¢ provably convergent (if « is correctly scheduled...)

« fully online, bootstraps estimates from estimates (V)

Advanced Machine Learning

92/163

LEARNING qﬂ(s, a) WITH TEMPORAL DIFFERENCES

With a given policy 7(a|s), TD learning can be directly applied to learning the action-value
function

& = n+vQx(st1,a41) — On (s, ar)
Ox(si,ar) < QOr(siyar) + ady
For each update we need (7, ar, 11, Si41, @r1)- (SARSA)
¢ enjoys same online/bootstrapping behavior of all TD methods
e on-policy: chooses actions from one policy and learns from the same policy

Sarsa (on-policy TD control) for estimating Q = g.

Initialize Q(s,a), for all s € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S,4) « Q(S, A) + a[R+1Q(S', A') - Q(S, 4)]
S+ 85 A« A,
until S is terminal

[Sutton and Barto]
On-policy TD learning is a compromise:

o ideally, the learned policy is optimal and greedy
¢ but it must behave suboptimally to adequately explore

Advanced Machine Learning 93/163

Q-LEARNING

Key idea: use two policies and learn from off-policy actions
e maintain an e-greedy behavior policy to choose actions

¢ learn (update Q) according to a greedy policy

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Initialize Q(s, a), for all s € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0

Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S, A) + a[R + ymaxa Q(S',a) — Q(S, A)]
S+ S

until S is terminal

[Sutton and Barto]

Note key difference between Q-learning and SARSA:
e SARSA chooses a,41 (A”) from the e-greedy policy
e Q-learning updates Q(s, a) with the greedy max, Q(s;+1, a)
Remember: once g is learned, the optimal policy is simple (intuition: cf. dropout, reg.,...)

1 a=argmax, q(s,d’
mlals) = {0 else -)

94/163

Advanced Machine Learning

Q-LEARNING

Off-policy TD control (Q-learning) was a major breakthrough in RL
¢ learns optimal policy while following an exploratory policy
¢ cnables observation of humans (expert/coach imitation) or other agents

o allows reuse of data generated from old policies

Q-learning (off-policy TD control) for estimating 7 ~ .

Initialize Q(s, a), for all s € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S, 4) ¢ Q(5, 4) + a[R +ymaxa Q(S',) — Q(S, 4)]
S+ S

until S is terminal

[Sutton and Barto]
The problem (with most interesting RL settings):
o the state/action space is too big — impractical to sample entirely
« the state/action space is continuous — impossible to sample entirely
¢ How to scale up Q-learning?
Idea: approximate ¢(s, a) with a parameterized function Qg (s, a)...

Advanced Machine Learning 95/163

‘We will use the handy gym environment from OpenAl

1
2
3
4
-

install OpenAl gym per https://gym.openai.com/docs/

import gym

import numpy as np

import matplotlib.pyplot as plt
env = gym.make('CartPole-v0')

[2017-11-21 14:11:55,562] Making new env: CartPole-w0

Important to understand the data

1
2
3
4
5
6
7
B

what are the observations and actions?

print(env.observation_space)
print (env.observation_space.low)

print(env.observation_space.high)

print(env.action_space)
Discuss comment from gym docs:

"Fortunately, the better your learning algeorithm,

the less you'll have to try to interpret these numbers yourself."
see also https://github.com/openai/gym/wiki/CartPole-v0 and note errors

Box(4,)
[—-4.80000000e+00 -3.40282347e+38

4.80000000e+00 3.40282347e+38

Discrete(2)

-4.18879020e-01
4.18879020e-01

Use available docs/wikis/blogs, but be careful...

Num

0

1
2

Advanced Machine Learning

Observation
Cart Position
Cart Velocity
Pole Angle

Pole Velocity At Tip

-3.40282347e+38]
3.40282347e+38)

Min
-2.4
-Inf
~-41.8°

-Inf

24
Inf
~41.8°

Inf

96/163

1 # See https://github.com/openai/gym/wiki/CartPole-v0

2 # Observation: [cart pos, cart vel, pole angle, pole vel]

3 # Note: bad docs... observation[2] is denominated in radians, so 'done' at +-0.21
4 # we will run some episodes to watch it fail

5 for ep inm range(20):

6 observation = env.reset()

7 for t in range(100):

8 env.render(})

9 # randomly sample an action

10 action = env.action_space.sample()

11 # take the action, and the environment responds

12 observation, reward, done, info = env.step(action)

13 print('step {}, action {}, reward {}, cbservation {}'.format(t,action,reward*(not done),observation))

step 0, action 0, reward 1.0, observation [0.00110925 -0.21506057 0.00975978 0.32138836]
step 1, action 1, reward 1.0, observation [-0.00319196 -0.02007896 0.01618755 0.0317992]
step 2, action 1, reward 1.0, observation (-0.00359354 0.17480716 0.01682353 -0.25573275]

Rendering

‘Advanced Machine Learning 971163

To organize our thinking, we create an Agent class

1
2
3
4
5
6
7
8

class Agent:

def

def

def

def

def

__init_ (self, policy='random'):

first what reward has the agent accrued so far (we would call this return, but...)
self.total reward = 0
self.policy = policy

choose_action(self, observation):
act according to the pelicy
if self.policy=='random':
return int(np.round(np.random.random()))
elif self.policy=='left_right':
if observation[2]>0.0:
return 1
else:
return 0

gather_reward(self, reward):
self.total reward += reward
get_total reward(self):
return self.total reward
set_total reward(self, new_total):
self.total reward = new total

Agent contains a (fixed) policy and acts according to 7(als).

‘Advanced Machine Learning 98/163

CartPole episode ends when the pole is 0.2 radians away from center (or 7 = 200)

1 policy = 'left_right'
2 agent = Agent(policy)
3 ep_rewards = []

4 for ep in range(20):

5 # reset environment and agent reward
6 last_observation = env.reset()

7 agent.set_total reward(0)

8 for t in range(100):

9 # note that rendering is the vast amount of the computational effort. Disable once comfortable...

10 #env.render()

1 # randomly sample an actien

12 action = agent.choose action(last observation)

13 # take the action, and the environment responds

14 observation, reward, done, info = env.step(action)

15 # update agent

16 agent.gather_reward(reward)

17 last_observation = observation

18 if done==True:

19 print('Episode {} died after time {} with total reward {}'.format(ep, t, agent.get total reward()))
20 ep_rewards.append(t)

21 break

22 if (eptl) % 20 == 0:

23 print('Average total reward so far {}'.format(np.mean(ep_rewards)}))

Simple fixed policies don’t learn and do rather poorly (~ 40 < 200)

using policy randem using policy left_right
100 g policy 100 g policy left_ngh
El EY
i i
a a
Loe Lo
g i
T z
5 5
g% 5
E 20 E E
0 25 s0 75 100 125 150 175 200 0 3 s 75 00 15 150 75 200

Advanced Machine Learning episode episode 997163

We will approximate Q(s, a) = Qp(s, a)
« In the simplest case: Qg (s, a) = 6a;,94. Where Os denotes a discretized index of s.

32 def obs_index(self, observation):

33 # a helper method to discretize the observation
34 bins = (np.array([1e20]),

35 np.array([1e20]),

36 np.array([-0.2,0,0.2]),

37 np.array([-.3,.3])

38)

39 ind=np.zeros(¢).astype(int)

40 for i in range(len(observation)):

41 ind[i] = np.digitize(observation(i],bins(i])
42 return tuple(ind)

43

44 def q(self, observation):

45 # now return the g function value for both actions
46 ind = self.obs_index(observation)

47 return self.theta[ind]

¢ To use Q learning we will need more parameters in our class:

3 def _ init (self, policy='random'):

4 # first what reward has the agent accrued so far (we would call this return, but...)
5 self.total_reward = 0

6 self.policy = policy

7 # discount, learning, exploration rates

8

self.gamma = 0.99

9 self.alpha = 1.0

10 self.epsilon = 0.2

11 # we will make q a nonparametric lookup table over g(s0,sl,s2,83,a)
12 # 5 is continuous so we will diseretize for simplicity

13 self.theta = np.zeros([1,1,4,3,2])

Advanced Machine Learning

100/ 163

Suppose Q is learned; we behave according to the e-greedy policy induced by Q:

57 def choose_action(self, cbservation):

58 # act according to the behavior poliecy

59 if self.policy=='random':

60 return int(np.round(np.random.random()))

61 elif self.policy=='left right':

62 if observation[2]>0.0:

63 return 1

64 else:

65 return 0

66 elif self.policy=='q discretized':

67 # an epsilon greedy policy

68 if np.random.rand() > self.epsilon:

69 if self.g(observation)[0]>self.q(cbservation)(1]:

70 return 0

71 else

72 return 1

73 else:

74 # explore

75 return int(np.round(np.random.random()))
Questions:

¢ How is the e-greedy policy actuated here?
¢ Where does the greedy choice take place?

¢ What does the object self.q(observation) represent?

‘Advanced Machine Learning 1017163

Q-LEARNING IN PRACTICE

Reminder: the Q-learning algorithm

TD control) for estimating 7 ~

Initialize Q(s,a), for all s € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,4) < Q(S, 4) + R+ max, Q(S', 0) — Q(S, A)]
S5
until S is terminal

In code:

for ep in range(1001):
reset environment and agent
last_observation = env.reset()
agent.set_total reward(0)
done at T==199 so no reason to go further
for t in range(201):
agent chooses an action
action = agent.choose_action(last observation)
agent takes the action, and the environment responds
observation, reward, done, info = env.step(action)
update agent with reward
agent.gather reward(reward)
update g function based on result
agent.q_update(last_observation,action,reward,observation)
iterate
last_observation = observation
if done==True:
ep_rewards.append(agent.get_total_reward())
break

Advanced Machine Learning

163

Q-LEARNING IN PRACTICE

Reminder: the Q-learning algorithm

Q-learning (off- y TD control) for estimating 7 ~ 7,

Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S, 4) < Q(S, 4) + a[R+ ymaxa Q(S',0) — Q(S, A)]
S+ 8
until S is terminal

That core Q update:

def g update(self, last_cbservation, action, reward, observation):
core Q-learning step
ind = self.obs_index(observation)
ind last = self.obs_index(last_observation)
NOTICE: This is a different implicit learning policy than the behavior policy
delta = (reward + self.gamma*np.max(self.theta[ind]) - self.theta[ind last+(action,)])
self.theta[ind_last+(action,)] += self.alpha*delta

Note the difference between the behavior policy and the learned policy; this is off-policy

Advanced Machine Learning 103/ 163

Reminder: Q-learning in code

4 for ep in range(1001):

5 # reset environment and agent
[last_observation = env.reset()
7 agent.set_total reward(0)

8 # done at T-

199 so no reason to go further

9 for t in range(201):

10 # agent chooses an action

11 action = agent.choose action(last_observation)

12 # agent takes the action, and the environment responds
13 observation, reward, dome, info = env.step(action)

14 # update agent with reward

15 agent.gather_reward(reward)

16 # update g function based on result

17 agent.q_update(last_observation,action,reward,observation)
18 # iterate

19 last_observation = observation

20 if dome==True:

21 ep_rewards.append(agent.get_total_reward())

22 break

Vastly improved performance

using policy q_discretized

200 I 1
75 I
150

15

100

total reward per episode

w8 @

episode

Note some dips in performance in some episodes... why?

Advanced Machine Learning

1000

1047163

We used an e-greedy behavior policy to explore

using policy q_discretized

=TT

ER]
g B B

total reward per episode

o B B o

episode.

Once we have learned ¢(s, a), we now only want to exploiz. Control without learning:

9 for t in range(201):

10 #env.render()

11 action = agent.choose action(last observation)

12 observation, reward, done, info = env.step(action)
13 agent.gather_reward(reward)

14 last_observation = observation

Greedy performance (render and watch the learned policy)

using poliey q_discretized

200
275
£ 0
S s

g 200
g 1975

30

1925
1900

0 s 00 150 200 250 3,00 3} 400
episode.

‘Advanced Machine Learning 1057163

Inspecting the learned Q function
e ..clarifies what the Q function really is
e ...develops intuition for how the control agent performs

¢ ...sanity checks what the algorithm has learned

1 # look at the g function to really understand what it is doing...

2 print(agent.theta[0,0,:,:,0])
3 print('")
4 print(agent.theta[0,0,:,:,1])
5 # Recall
6 #bins = (np.array([le20]),
7 # np.array([le20]),
8 # np.array([-0.2,0,0.2]),
9 # np.array([-.3,.3])
10 #)
11 # and 0== LEFT , 1==RIGHT
[[1.48386329 2.43854066 0. 1
[100. 100. 99.99491416]
[100. 100. 98.33991503]
[o. 0. 0.292298417]]
[[2.10196704 0.53150942 7.53990426]
[99.76560516 100. 100. 1
[99.99832557 100. 100. 1
[0. 0. 1.45032334]]

‘Advanced Machine Learning

106/ 163

The simple tabular function:
e is easy to learn
¢ has only a few parameters
¢ can not share information across states

e can not scale up to large state spaces or large action spaces
Idea: make Qg (s, a) a deep network

Convglutiun Convglution Fully L‘.Bnnemed Fully Dgnnel:‘ied

L] . B
/ .
//WE B /=

I/

0

“ =
\ 8\
\ N
S TR

[Mnih et al (2015)]

Advanced Machine Learning 107 /163

Key enabling idea: maintain a memory of data to use as experience replay

1 class Replay:
2 # accepts a tuple (s,a,r,s') and keeps a list, returns a random batch of tuples as needed
3 # remember this is g learning, so a‘ is not needed (why?... off policy argmax a)

4 def _init_(self):

5 self.buffer = []

6 self.length = 0

7 self.max_length = 100000

8

9 def write(self, data):

10/ if self.length >= self.max_length:
11 # drop oldest data point to make room for new

12 self.buffer.pop(0)

13 self.length —= 1

14 self.buffer.append(data)

15| self.length += 1

16

17 def read(self, batch_size):

18/ # randomly sample a batch and return a list thereof

19 return random.sample(self.buffer,min(batch size,self.length))
20

Because Q-learning is off policy, this buffer enables us:
¢ to explore with an e-greedy behavior policy, gathering plenty of experience data

* use those experiences to replay a mini-batch (s;, a;, ri, Si+1)
¢ train a network in our usual supervised fashion, with the objective:
. 2
min (i — Qo(si, ai))
T if 5,41 is terminal

where =
Y ri + vy maxy Qgoua (Si+1,a) else

o Note: #°/ simply indicates that y; is a fixed target for training (0 gradient wrt 6).

108 /163

Advanced Machine Learning

Now we need a network Qg (s, a)
o it will take as input a state s, € R*

Qg (St, a

it will return as output a vector 0o(sta
1y Ut

0)
=1)

o it will be a regression network (ie not the usual softmax as in CNN)

class Network:

1

2

3 def _ init (self, session, n_in , n_out):
4 self.session = session

5 self.n_in = n_in

6 self.n_out = n_out

7 self.n_hidden = 60

8 # data placeholders

9 self.x = tf.placeholder(tf.float32, [None, n_in], name='x')

10 self.y = tf.placeholder(tf.float32, [None, n_out], name='y')

11 self.x_in = tf.reshape(self.x, [-1,self.n_in])

12 # 2 layer network

13 self.W_fcl = tf.get variable('W_fcl', shape=[self.n_in,self.n_hidden])
14 self.b _fcl = tf.get variable('b fcl', shape=[self.n_hidden])

15 self.h_fcl = tf.nn.relu(tf.add(tf.matmul(self.x_in, self.W_fcl), self.b_fcl, name='layerl'))
16 self.W_fc2 = tf.get variable('W fc2', shape=[self.n_hidden,self.n_out])

17 self.b _fc2 = tf.get variable('b fc2', shape=[self.n out])

18 self.q = tf.add(tf.matmul(self.h_fcl, self.W_fc2), self.b_fc2, name='layer2')

19 # loss, train step, etc.

20 self.loss = tf.reduce sum(tf.square(self.y - self.q),1)

21 self.train_step = tf.train.AdamOptimizer(le-4).minimize(self.loss)

22

23 def compute(self, x):

24 # evaluate the network and return the action values [q(s,a=0),q(s,a=1)]

25 return self.session.run(self.q, feed dict={self.x:np.reshape(x,[-1,self.n_in])})

26

27 def train(self, x batch, y batch):

28 # take a training step

29 _ = self.session.run(self.train _step, feed dict={self.x: x batch, self.y: y batch})

Advanced Machine Learning 109/ 163

Caution:

e itis easy to get lost between Q-learning, the network, tensorflow, etc.

¢ make good design choices (eg abstract as much t £ as possible into Network class)

¢ test the network before involving the Q-learning complexity

1 # simple demonstration that network is able to train properly.
2 # allows us to confirm network function before putting it in the RL problem...
3 with tf.Graph().as_default():

with tf.Session() as sess:

£ = Network(sess, 4, 2)

usual tf initialization
sess.run(tf.global_variables_initializer())

x = np.random.randn(10000,4)
some silly function that I hope a 2 layer network could (roughly) learn
Y = np.transpose([X[:,0]+x[:,1]**2, X[:,2]+xX[2,3]**3])

print('MSE at iteration 0 is {}'.format(((f.compute(x) - y)**2).mean()))

now train...
for i in range(10000):
f.train(x,y)

print('MSE at iteration 10000 is {}'.format(((£f.compute(x) - y)**2).mean()))

MSE at iteration 0 is 10.355688135436504
MSE at iteration 10000 is 0.5883747123982974

Now I know I have a working regression network and a working Q-learning algorithm...

110/ 163

Advanced Machine Learning

Now the agent
e is initialized with a replay buffer and a Q network

¢ has a method to gather experience (build up the replay buffer)

¢ behaves according to the usual e-greedy policy (note the network call!)

1 class Agent:
2

3 def __init_ (self, tf session):

4 self.n_in

5 self.n_out = 2

6 # first what reward has the agent accrued so far

7 self.total reward = 0

8 # discount, learning, exploration rates, batch size

9 self.gamma = 0.99

10 self.epsilon = 1.0

11 self.batch_size = 50

12 # make an experience replay buffer

13 self.replay_buffer = Replay()

14 # make the network that will be the g function

15/ self.q = Network(tf_session, self.n_in , self.n_out)

16

17 def gather_experience(self, last_observation, action, reward, observation):
18 # push this experience onto the replay buffer

19 self.replay_buffer.write((last_observation, action, reward, observation))
20,

21 def choose_action(self, observation):

22 # behave according to an eps.xlon greedy policy

23 if np.random.rand() > self.epsi.

24 if self)[0 0]>self te (ion)[0,1]:
25 return 0

26 else:

27 return 1

28 else:

29 # explore

30 return int(np.round(np.random.random()))

Now I know I have a working regression network and a working Q-learning algorithm...

1117163

Advanced Machine Learning

Conceptually (almost) identical
¢ The same fundamental loop of state, action, reward, state, (q update),...
¢ Small change: write experience to Agent buffer for later replay
¢ Small change: write a None state to recognize failure (why does replay necessitate this?)
¢ And a bit of the usual t £ overhead (without tb for clarity)

1 with tf.Graph().as_default():
2 ep_rewards = []

3 with tf.Session() as sess:

4 # create an agent

5 agent = Agent(sess)

6 # usual tf initialization

7 sess.run(tf.global variables initializer())
8

e
9 # O-learn (train) DON on CartPole
10 Licad
1 for ep in range(1501):
12 # reset environment and agent
13 last_observation = env.reset()
14 agent.set_total_reward(0)
15 # done at T==199 so no reason to go further
16 for t in range(201):
17 # agent chooses an action
18 action = agent.choose_action(last_observation)
19 # agent takes the action, and the environment responds
20 observation, reward, done, info = env.step(action)
21 # check for fail state
22 if done==True:
23 observation = Nome
24 # update agent with reward and data
25 agent.gather_reward(reward)
26 agent.gather_experience(last_observation, action, reward, observation)
27 # update g function, which will use the memory
28 agent.q_update()
29 # iterate
30 last_observation = observation
31 if done==True:
32 ep_rewards.append (agent.get_total reward())
33 break

Note the conceptual importance of thoughtful design/abstractions to simplify implementation

Advanced Machine Learning 1127163

The only novel complexity here is taking steps in 6 to optimize Qg (s, a). Recall:

where yi =

méin (yi — Qo (s1,a1))*

ri if s;4 is terminal
ri + ymaxq Qgou (Sit+1,a) else

In the Agent class:

Note:

def o update(self):

pull a batch from the buffer

sars_batch = self.replay_buffer.read(self.batch_size)

compute the g function for all last_obs and obs

q_last = self.q.compute([5(0] for s in sars_batch])

q_next for current obs requires a bit more attention, since done flag means g should be zero

q_this = np.zeros_like(q_last) # initialize g to zeros

ind_not_none = [i for i in range(np.shape(sars_batch)[0]) if sars_batch(i][3] is not Nome]

q_this_not_none = self.q.compute([sb[3] for sb in sars_batch if sb[3] is mot None])

now Fill g this with just the valid g, leaving others [0,0]

for i in range(len(ind not_none)):
q_this[ind_not_none[i],:] = g_this_not_none[i,

a list comprehension is nice but 5x inefficient... want to pass tensorflow a batch block

q this = [([0,0] if 5(3] is Nome else self.q.compute(s(3])) for s in sars batch]

now chunk this up as the train step expects

_in])
out])
£ 3 == sars_batch[i][1]:
the key step... this is the q learning target
¥ batoh[i 3] = sars batch(i][2] + self.gama‘np.max(q this(i])
else:

y_batchli,3] = q last(i](3]
5 ey o 5 i T
self.q.train(x_batch,y_batch)

¢ exploits/requires the None terminal state

« computational efficiency: here sacrificed code clarity for speed (5 — 10x)
e all tfishiddening.train

Advanced Machine Learning

1137163

‘We used an e-greedy behavior policy to explore (note: large e found empirically useful in DQN)

DON CartPole g-learning (training)

100

totalreward per episode

o ¥ 8 3

0 00 0 &0 &0 1000 1200 1800
episode

Once we have learned Qg (s, a), we now only want to exploit. Control without learning:

50 for ep in range(101):
51 # reset environment and agent

52 last_observation = env.reset()

53 agent.set_total_reward(0)

54 agent.reset_epsilon()

55 # done at T==199 so no reason to go further

56 for t in range(201):

57 env.render ()

58 action = agent.choose_action(last_observation)
59 observation, reward, done, info = env.step(action)
60 agent.gather_reward(reward)

61 last_observation = observation

Greedy performance (render and watch the learned policy)

Advanced Machine Learning

DON CartPole control (test)

s
§ o

8 225
200

I reward per

§ 150
125

1800

P
b 1147163

From here simply elaborate Q network (includes CNN frontend)

vo ully cor Fully connected
o o
b
Lo ==
(] . .
a LA
A\ i
e
IR\
M N\ =
o e
CHE
:
8 by ¢ ==
N\ . .
o o
o ¥
e
e = om

Learn the Q function for Pong

> O Sovo-vn S an S -

2] 5
¥ u-
§ o3| M com
[Mnih et al (2015)]

Advanced Machine Learning 1157163

Superhuman performance across a range of different games

%0057 000't 009 00§ ooy 00e 002 00k 0
L ! 1 |

Jousee) Jeaul| 1sog

e |
szl

|eAs|-uewny mojeg
9A0GE 10 [BAS]-UBWINY I

||m“im“m“Iilliiiliiiiimm

"
|

‘Advanced Machine Learning

abusAsY S, BUINZOIUOW
o3 alend
TRYARID
aygisoi4
splosaisy
UB-OBd "SI
Buymog

sjunq ejgnoq
1sanbesg
ainjuep

ually

zepiwy

uoxxez

pley Jond
1SPH Mueg
spadpuen
Ppuewwo) seddoyd
IOM JO PIEZIM
auoz apeg
Xuelsy
‘Od'IH
¥eq,0

AKoxooH &0
umoq pue dn
Aqseq Buiysid
ounpu3

olid awiL
Aemeaiy
Jeyse ng-Bunyy
weyjueint
JopiY weag
siepeAu| soeds
Buog

siuuay

puog sawep
oorebuey|
JsuuNy peoy
Jnessy

I

awep sy swen
>oeny uowaq
Joydon
4equuD Azein
Shuepy
uejogoy
JBuuNg JeIS
noseag
Buxog

Irequid 03pIA

116 /163

[Mnih et al (2015)]

REINFORCEMENT LEARNING: WHERE NEXT

Of course, there is a great deal of underlying empiricism in DQN and RL generally:

hyperparameter and network adjustment

training runs and replay buffers

data preprocessing

early training policies (eg in CartPole: do better by learning Qg from left-right)

etc...

Where to go from here:

Advanced Machine I

Play with the given DQN implementation (see hw5)
Consider project 4 for final project

Get the Atari emulator in OpenAl gym
(https://github.com/openai/gymffatari)

Proceed to the next advance: asynchronous advantage actor critic (A3C) RL
(https://arxiv.org/pdf/1602.01783.pdf)

earning

1177163

RECURRENT NEURAL NETWORKS

TRANSITION TO RNN: RECALL TEXT DATA

Can we predict the next word in a text?
¢ In language, the co-occurrence and order of words is highly informative.
e This information is called the context of a word.

¢ We can use such a model to generate text of arbitrary length

Example: The English language has over 200,000 words.
¢ If we choose any word at random, there are over 200,000 possibilities.
¢ If we want to choose the next word in
There is an airplane in the __

the number of possibilities is much smaller.

Context information is well-suited for machine learning:
¢ By parsing lots of text, we can record which words occur together and which do not.

¢ Reminder (from previous class): the vanilla models based on this idea are n-gram models.

Advanced Machine Learning 1197163

BIGRAM MODELS

Bigram model:
¢ A bigram model represents the conditional distribution
Pr(word|previous word) =: Pr(hy|hj—1) ,
e wy is the /th word in a text.

e Bigram models are a simple Markov chain on words: a family of d multinomials, one for
each possible previous word.

N-gram models
* More generally, a model conditional on the (N — 1) previous words
Pr(hylhi—1, s l_nv—1))
is called an N-gram model (with the predicted word, there are N words in total).
¢ Unigram model: the special case N = 1 (no context information)
Transitioning representations (example bigram model)

probabilistic modelling view RNN functional view (x; = prev word)

|

Advanced Machine Learning 120/ 163

LEARNING SHAKESPEARE (1)

Unigram Model

To him swallowed confess hear both. Which.
Of save on trail for are ay device and rote life
have

Every enter now severally so, let

Hill he late speaks; or! a more to leg less first
you enter

Are where exeunt and sighs have rise
excellency took of.. Sleep knave we. near; vile
like

Advanced Machine Learning

Bigram Model

What means, sir. I confess she? then all sorts,
he is trim, captain.

Why dost stand forth thy canopy, forsooth; he is
this palpable hit the King Henry. Live king.
Follow.

What we, hath got so she that I rest and sent to
scold and nature bankrupt, nor the first
gentleman?

Enter Menenius, if it so many good direction
found’st thou art a strong upon command of
fear not a liberal largess given away, Falstaff!
Exeunt

[Jurafsky and Martin, "Speech and Language Processing", 2009]

1217163

Trigram Model Quadrigram Model
Sweet prince, Falstaff shall die. Harry of King Henry. What! I will go seek the traitor
Monmouth’s grave. Gloucester. Exeunt some of the watch. A great

This shall forbid it should be branded, if banquet servd in;

renown made it empty. Will you not tell me who I am?

Indeed the duke; and had a very good friend. It cannot be but so.

Fly, and will rid me these news of price. Indeed the short and the long. Marry, ’tis a
Therefore the sadness of parting, as they say, noble Lepidus.

’tis done.

[Jurafsky and Martin, "Speech and Language Processing", 2009]

Advanced Machine Learning 1227163

CosT

probabilistic model RNN view (x; = prev word)

Basic Markov models scale terribly with context size:
e N-gram model considers ordered combinations of N distinct words
e Suppose a text corpus contains 100,000 words. Thus 1000007 = 10°V parameters
¢ As such, N-gram models are conceptually valuable but won’t scale
¢ Long-timescale context is critical. Consider the classic example:
“I am from California and lived in various places for many years. Therefore I speak __.”

¢ This cost only gets worse for hidden Markov models with (possible) inputs

Advanced Machine Learning

RECURRENT NEURAL NETWORKS

Key idea: hy = gg(h;—1,x:). A hidden state carries longer-term context information
o RNNs use a neural network for this evolution of hidden state (but it needn’t be)

o A single, fixed network gg governs transitions (cf. HMM transition matrix)

Output can be A; Output can be y;|h; (cf. Markov model vs HMM)

o There is rarely agreement on what a particular structure means (eg LSTMs; cf. CNNs)

‘Warning:

o There is no definitive text (though many papers) articulating these concepts

o ..but RNNs are rapidly evolving and producing some of the most exciting results in AT

Advanced Machine Learning

Consider the following simple character model:
« alphabet consists of {4, e, [, 0}, one-hot encoded
e hidden layers evolve as iy = o (Wyphi—1 + Wypx;)

... (o is usual activation nonlinearity, here tanh)

e output y; = Wp,h (think logits... then take softmax)

targetchars: ‘“e” a5 - “o"
1.0 05 0.1 0.2
22 03 0.5 -1.5
output layer |Eoe 1.0 19 04
4.1 1.2 -1.1 2.2
T T W_hy
03 1.0 0.1 |w pp| 03
hidden layer | .01} —= 03 | ——| -05| —+ 09
0.9 0.1 0.3 0.7
IR R B 7"
] [o] [o] [o]
i 0 1 0 0
input layer 0 0 1 1
0 0 0 0
input chars: “h" “e” T “

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Intent: h; carries longer-range context, without exponential parameters of N-gram models.

Advanced Machine Learning

1257163

Recall the vanishing gradient discussion from deep CNNs:
¢ Backprop is the chain rule, multiplying Jacobians together repeatedly
¢ Exponential decay of gradients results

¢ Simple demonstration: repeated linear/tanh/linear/tanh/...

4 T T T T

3t — o\
3
a 2 - 1
3 1} . e o 2]
< _
= of - - 34
‘9 _\\; 4
agv I e . PR e -
L] 5|
A

3}]

4 1 I | ! 1

~60 —40 —20 0 20 10 60

Input coordinate
[Goodfellow et al 2016, ch10]
¢ Particularly relevant in RNNs: long-range context ignored over short-range

Much work has gone into designing clever network structures to persist long-range context

Advanced Machine Learning 126/ 163

LONG SHORT-TERM MEMORY NETWORKS

Long Short-Term Memory Networks are the de facto standard for RNN memory context
¢ Custom engineered network architecture to have a notion of memory
o (recall CNNs: hand-chosen architecture to exploit problem structure)
¢ Origin [Hochreiter and Schmidhuber 1997]; many times improved and iterated since then
¢ Only recently (2014) has a second major alternative architecture arisen (next class)
Understand the abstraction: there is simply a network gg evolving hidden state

Original RNN Full LSTM

Je o (Wyex + Wyehi—y + by)
i = g (Wxixt + Whihr—l + hi)
c tanh (W Whehs — b
he = tanh (Wipxe + Wiphi—1 + bp) Z; _ ?(é/msz:_wh h;l[! . 1++bas)
= ‘ ol
= G 1 Ofit O
hy = tanh (¢;) © oy

Pictures from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Notation consistent with [Jozefowicz et al 2015]

Advanced Machine Learning

1277163

Rather than hidden state /;, we now pass h; and a cell state c;

¢ This is no problem: define = [ﬁ’} , and it is still an RNN.
t

()]
@
L

The cell state:
¢ provides a channel for long-range information/memory to propagate forward

¢ without corrupting/compromising the hidden state (which is directly output relevant)

Note: the LSTM network architecture is often (inconveniently?) called an LSTM cell.

‘Advanced Machine Learning 128 /163

Now we must consider how the hidden state and cell state interact. First, the forget gate:
¢ Conceptually, f; chooses to forget or pass the current cell state
¢ Elementwise forgetting, so it is doing so individually for each unit (the width) of ¢;

Tt
fi = o (Wyxi + Wigh—1 + by)

The forget gate
¢ can be thought of as projecting dimensions of x; and A,
o ... that remove or persist certain dimensions of ¢,
¢ Convince yourself that this is a useful way to free or hold data in memory
e Note: o must be € [0, 1], but can be sigmoid, tanh, etc...

Advanced Machine Learning 129/ 163

Continuing hidden state and cell state interaction. The input gate:
o If f; chooses to forget or pass the existing cell state...
¢ Input i; chooses what to pass in as a new cell state
¢ Again elementwise...

o (Waixt + Whihi—1 + b;)
tanh (WyeXt + Waehi—1 + be)

it =

i)
Il

The input gate
¢ can be thought of as projecting dimensions of x; and A,
o ... that load or ignore certain dimensions of the new proposed cell state ¢;
¢ Convince yourself that this is a useful way to load/not load data into memory

» Note: again o must be € [0, 1], but can be sigmoid, tanh, etc...
Advanced Machine Learning 130/ 163

The effects of the forget and input gates are then loaded onto the cell state ¢;:
¢ Elementwise action of persisting/overwriting the long-term memory cell ¢;

a=c¢_10fi+cOi

Critical to intuition:
¢ This is neural networks, so we hope to learn from data when to forget, load, etc.
¢ All operations here are elementwise, so many different loads/persists occur in parallel

¢ So far we haven’t affected £, yet...

Advanced Machine Learning 131/163

LSTM OUTPUT GATE

Continuing hidden state and cell state interaction, but now to /;. The output gate:
o If f; chooses to forget or pass, and i; chooses what to pass...
e 0; chooses when to write out the cell ¢; to ;.

@ani>
o)
g m hy
or = 0 (Woxi + Whohi—1 + byo)
hy = tanh(c;) © or

Same as before: the output gate is a useful way to send data onto /;

Note the key and complementary differences here between /; and c;;
e}y is either the output or parameterizes the output y; \h,.
e thus has short-term or more immediately relevant data
e ¢; can persist over long-range periods and needn’t (directly) drive output (o;)

Advanced Machine Learning

1327163

LONG SHORT-TERM MEMORY NETWORKS

‘We have built up the structure of a standard LSTM
e there are many minor variants
¢ but all share the basic forget/input/output and cell’/hidden components
e thankfully, neural network libraries abstract all these blocks and parameters away
e See for example tf.contrib.rnn.LSTMCell
¢ The key reminder: like a CNN, this is just a (highly engineered) neural network gg

Original RNN Full LSTM
(&)
T\‘
A A A
® (3]
S = o (Wyxi+ Wigh 1 + by)
i = g (inxt + Whihi—1 + bz)
_ Cr = tanh (chxr + thhl—l + bc)
he = tanh (Wyxe + Wiphe—1 + by) o = o (WeoXs + Wiohy—1 + bo)
Gt = -1 Ofi+ ¢t Ol
h = tanh (¢;) © o;

Advanced Machine Learning 133/163

‘We will treat all of Shakespeare as a long string

COMINIUS:
It is your former promise.

IMARCIUS:

Sir, it is;

IAnd I am constant. Titus Lartius, thou

Shalt see me once more strike at Tullus’ face.
What, art thou stiff? stand’st out?

TITUS:

INo, Caius Marcius;

I’11 lean upon one crutch and fight with t’other,
Ere stay behind this business.

This string:
e has length 4573338

e can be one-hot encoded with vectors x; € R®7, namely:

The 67 inputs are:

G

Recall N-gram models on words. Now we model Shakespeare character by character

‘Advanced Machine Learning 1347163

Recall:
e Each x; is the previous character (context!) ONO,
¢ Network predicts 4, from x; o o
* No recurrence here (yet)...

-——-Post-training Sample----
pawhenyyrcato he f to avyrod
T: couwendory:

s WEI
Tt
ILouthe hair’le,e er s the;Kt t t u

Notice:
¢ This is multinomial, so we can sample characters from the network output
¢ Try an easier dataset:

[F———Pre-training Sample----
nodz nppvqfvfu qfyxbrvmathpengrlvgkqtlaozzdct otfrwdekrkdp wircabmcaxwntgvnkwlvggxyaweuawxm
----Post-training Sample----
ick juick fog oved fog the jumped jumpe rown jumpn quick brog the jumpe therown fove fown

¢ We could also predict with a more straightford np . argmax

-—--Pre-training Sample----
rfvyd
- --—Post-training Sample----
jumpe the t

Advanced Machine Learning 1357163

As usual we seek to take gradients in 6:

define RNN
self.Wyh = tf.get_variable('Why', shape=[self.n_hidden,self.n_out])
self.by = tf.get_variable('by', shape=[self.n_out])
if self.rnn_type=='llayer':
self.Wxh = tf.get variable('Wxh', shape=[self.n_in,self.n_hidden])
self.bh = tf.get variable('bh', shape=[self.n_hidden])
self.whh = tf.get_variable('Whh', shape=[self.n_hidden,self.n_hidden])
def rnn_layer(self,x,h):
with tf.name scope('rnn layer'):
this can be called either via training or stepping
if self.rnn_type=='llayer':
return tf.nn.tanh(tf.matmul(x, self.Wxh) + tf.matmul(h, self.Whh) + self.bh)
def rnn_logit(self,h):
called either via training or stepping
with tf.name_scope('rnn_logit'):
return tf.matmul(h, self.Wyh) + self.by

But wait...

Context:
» Though |#| is manageable, the chain rule can extend arbitrarily far back in time
¢ We will truncate at some length (here 7 = 50) and call that the context of i,
o We believe that this depth will provide adequate approximation to the true gradient...

Advanced Machine Learning 136/ 163

We will train on context batches of length T = 50 (or similar)
¢ Unlike all previous batching, context batches are sequential
¢ tf must loop through to propagate the hidden state /,

split (and squeeze) to get BPTT inputs, that is, a list of length n context with usual [batch size,n in]
note: see code at bottom of notebook for critical ",[1]" fix
self.xs = [tf.squeeze(xx,[1]) for xx in tf.split(self.x, self.n_context, axis=1)]
self.ys = [tf.squeeze(yy,[1]) for yy in tf.split(self.y, self.n_context, axis=1)]
propagate h through context length
self.h = []
h = self.h_
for x in self.xs:
here the first time h_ is broadcast to the np.shape(x,0) (as in, batch size)
h = self.rnn_layer(x,h) #tf.nn.tanh(tf.matmul(x, self.Wxh) + tf.matmul(h, self.Whh) + self.bh)
self.h.append(h)

make outputs from h
with tf.name_scope('model’):
self.logits = []
self.ypred = []
for h in self.h:
logits = self.rnn_logit(h)
self.logits.append(logits)
self.ypred.append(tf.nn.softmax(logits))

self.rnn_layer carries same parameters, but /; is now recurrent and can now be trained:

B
i 3
H

SR L
H H H

st st s

sl
(3 ¥y ¥y
5 g 1]

Advanced Machine Learning 1377163

1 LAYER RNN TRAINED ON SHAKESPEARE

summaries/accuracy summaries/loss
0.600 3.00
0.400 2.00 }
0.200 1.00 }
0.00 | 0.00 “
0.000 200.0k 400.0k 600.0k 0.000 200.0k 400.0k 600.0k
DEE 0EE

Name Smoothed Value Step Time Relative

O 1layer_64_50 0.4822 0.3800 638.8k Mon Dec 4,07:31:22 1h39m 16s

Notes:
o Iterations are each batches of T = 50 context, sequentially, with iy = [0, ..., 0]
o Effectively 7 epochs (full passes through text)
« Single hidden layer with n = 64 units, fully connected to logits (here € R%7)
e Accuracy/loss is averaged over batch in the usual way

e Learning occurs, and frankly high accuracy is unlikely (even undesirable?)

Advanced Machine Learning 1387163

Consideration:
¢ How to forward sample text?
e Where do we get h;_1?

¢ How to step +1 when we wrote the code to operate on a context of depth 7 = 50?

k = (epoch*batches_per epoch + batch).astype(int)
summary writer.add summary(summary, k)

print(’ [epoch:{},batch:{},all batches:{}] has loss {} ' .format (epoch,batch,k,loss))
take the last hidden and target to seed a writing
h = h_prev

text_out = y batch[-1]

for j in range(200):
roll forward and fantasize text of length 200
h, y = rnn.sample_step(text out[-1],h, sample=True, temp=min(batch/5000,5))
text_out += y

print(text_out)

print('")

Now the RNN can fantasize Shakespeare texts...

Advanced Machine Learning 139/ 163

1 LAYER RNN TRAINED ON SHAKESPEARE

Very early in training:

[epoch:0, batch: 6000,all batches:6000] has loss 3.277571439743042
do si, pur et hirb ond aopm bohcon mttt ahr home we, peme thaucno, ior rere lethe mias iol 1lh

Wwtye thot Toates ases n wnmdsd tott anl mhew shers thie caeuame soece cUpfng-r Sowsedt mo tiree
In oie the

Later in training:

[epoch:3,batch:21000,all batches:295398] has loss 1.7853922843933105
lAnd sin, I will and have my love the seet the singed the sear and the wart,
The still the have you the singly and that his a dider his and and the have to her for the still and the mangers
lAnd the hav

summaries/accuracy summaries/loss
0.600 3.00
0.400 2.00
0.200 1.00
0.00 | 0.00 |
0.000 200.0k 400.0k 600.0k 0.000 200.0k 400.0k 600.0k
e DEE

Name Smoothed Value Step Time Relative

O 1layer_64_50 0.4822 0.3800 638.8k Mon Dec 4,07:31:22 1h39m 16s

Advanced Machine Learning 140/ 163

Tensorflow has an excellent abstraction to handle all the recursion... if you know how to use it.

self.c_ = tf.placeholder(tf.float32, [None,self.n_hidden], name='c_')

self.h = tf.placeholder(tf. flohtaz, [None,self.n_hidden], name='h ')

An LSTMStateTuple that can be fed as initial state to dynamic_rnn

self.state_ = tf.nn.rnn_cell.LSTMStateTuple(self.c_, self.h) # 2 x None x n_hidden

define RNN

self.Wyh = tf.get variable('Why', shape=[self.n_hidden,self.n_out])

self.by = tf.get_variable('by', shape=[self.n _out])

self.cell = tf.contrib.rnn.LSTMCell(self.n_hidden)

If cells are LSTMCells state will be a tuple containing a LSTMStateTuple for each cell.
h_outs, self.state out = tf.nn.dynamic_rnn(self.cell, self.x, initial state=self.state_)

time major=True implies time, batch, depth; see https://www.tensorflow.org/api_docs/pythc
time major=False implies batch, time, depth

now h_outs is batch,time, hidden size
self.h = tf.reshape(h_outs,[-1,self.n_hidden])
with tf.name scope('model'):
self.logits = self.rnn_logit(self.h)
self.ypred = tf.nn.softmax(self.logits)

Be careful with LSTMStateTuple; know why and how to use it

Advanced Machine Learning 1417163

Very early in training:

vh ho osnth twh eain r ovs shutn haoe hyr 1h he oonctlerk

aa sEddh serotste
nue 1s ldlhe ul hee ds voosit eanuu e sttsht ohme t e’nhcd trost
ti tewe le?,0 hus:ee pero rh so heetbtuy m oteimnowny

[epoch:0,batch:6000,all batches:6000] has loss 3.478269338607788

Later in training:

[epoch:3,batch:21000,all batches:295398] has loss 1.5456037521362305
IAnd the stanter to the well the stange.

[PRINCE :
I wall me the with a marter to the sir.

[PRINCE:
He sould the with a tould and the sould here
The lear and the words and the sell the werts.

[IPRINCE:
|An

o 1000k 2000

Advanced Machine Learning

w000

1427163

Trained on character sequences alone!

[epoch: 6, batch:80000,all batches:628796] has loss 1.6592674255371094
uch a stranger to see thee and the word.

IRPEMANTUS @

IAnd there is not for the tooth that we may be so
nust be a more and the man and man the soor

IAnd the field to my lord of the company.

TTMON :
The so

| [epoch:6,batch:83000,all batches:631796] has loss 1.1526007652282715
lJohn, the world

That will be seen the sense of the world,

IAnd the shall be the stranger than the hand

That we shall be a brother to be the word.

[PISANIO:
I will not the father than the strong of his g

summaries/aceusacy

om

haam7e

Advanced Machine Learning

1437163

256 unit LSTM trained for 15 epochs

1l the the the cound the serest the here.

ICARONES :

The will and the the the come the gorters and
IAnd the hare the there the shere the pranged
The lave the manter the the could with the shere
IAnd the co

summaries/accuracy

Name Smoothed Value Step

lioyer.64.50 04607 02800 639

lm_120.50 05460 04000 6

You shall see the state of the charge of the
streather of the moon of the proceased with him.

ING LEAR:

hy, they are not so not the hold him to me,
The preating perceive the good field of the
lsense

Advanced Machine Learning

UEEN MARGARET:
I will not be a man that have been clothes
nd have the false than the fortunes of them.

UEEN MARGARET:
I will not be a state of men and thee,
nd therefore like a curse of the best

I will not hear thee to the counter souls.

lclown:
hat is this thing?

ISTR TOBY BELCH:
I will not think the streets of my foes and the state
of this and that thou art a good and beard.

ISIR TOBY BELC

144 /163

How to go further:

e LSTM are an input-output function...

¢ ...so can be composed...

o Elaborate to stacked LSTM cells.

Tensorflow makes this easy:
cell = tf.contrib.rnn.LSTMCell (n_hidden)
stack = tf.nn.rnn_cell.MultiRNNCell ([cell]xn_layers)

Stacked LSTM and their variants are the workhorse of modern Al with sequence data.

Advanced Machine Learning

1457163

GATED RECURRENT UNITS

Notice
¢ LSTM offers major increases in performance and long-range dependency modeling
o That said, it’s bit difficult to argue the necessity of f, ir, 0; in the LSTM
¢ Other choices, based on update gate z;, form the Gated Recurrent Unit [Cho et al 2014]

Original LSTM Gated Recurrent Unit (GRU)

hy

-1 Ofi+ & O
tanh (¢;) ® o4

B
Il

1=z)Oh_1+zOh

fooo= o (Wt + Wighi g + by)

it = o (Wﬂ-x, + Wpihy— 1 + b,’) 2t = g (szx, + Wighi—1 + b:)

¢t = tanh (Wr(‘xt + Wpehi—1 + h(,‘) Tt = o (anz + Wirhi—1 + br)

or = o (onx/ + Wiohy—1 + h,,) hy = tanh (th"‘r + Wiy (r, ® h,_l) + b,,)

Does this matter/help? An ongoing debate:
¢ See [Jozefowicz et al 2015] for a thorough empirical comparison of architectures
¢ There is no theory to suggest these choices, though sensible, are necessary or precise

e Try it yourself: compare t£.contrib.rnn.LSTMCell tO t£.contrib.rnn.GRUCell

Advanced Machine Learning

146 /163

Many of the usual tricks are essential to RNN performance
¢ validation data, batch normalization, dropout, etc...

...conveniently: tf.nn.rnn_cell.DropoutWrapper (cell, output_keep_prob=0.8)
Where to go next / key ideas that we have not covered:

Bidirectional RNNs

Multi-input/multi-output (e.g. seq2seq)

one to one. one to many many to one many to many

i

t

many to many

:

e
-

-

=

-
==

I

-

i

[
[—
(==
[—
=

Word embeddings (e.g. word2vec)

Attention
1 i ! ! i [
ot | &0 |—| & |—| & || & | o |—| o |—| &
Decoder do —_— dy —_— de —_— ds

Male-Female Verb tense

Knowledge is power

RNNs are a massive area of current and exciting development

Advanced Machine Learning 1477163

IMPLICIT PROBABILISTIC MODELS

MODELING

A central problem in statistics and machine learning is choosing a model:
M= {p¢ RN <I>}

Prescribed probabilistic models:
e form py (x) directly
o Most of statistics (and what we’ve seen in these courses) is of this form

o Gaussian, uniform, ...

Implicit probabilistic models:
¢ Partition the randomness and the structure into two different problems
* Generate latent z; ~ po(z) and compute x; = g4 (z;) with some parameterized function g
« Induces a (possibly) more complex model/family of distributions p4 (x)

¢ You have seen this before in your first stats class (inversion sampling):

z ~ Unif(0,1) x:F;I(z) — x ~ Exp(¢)

F 4 is the cdf of the exponential distribution, Fg (x) = 1 — exp(—¢x), with F;I (z) = —¢log(l — z2)

o Natural setting in differential equations, ecology, weather, finance, and many other fields

Advanced Machine Learning

1497163

IPMS WITH DEEP NEURAL NETWORKS

Idea
 Sample randomness from a particularly easy distribution z ~ A(0, 1)
¢ Use a deep neural network as the structure map g
* Best of both worlds? ...flexible, expressive py (x) that is easy to sample and learn

1. Variational inference ¢« (z) = arg minge g KL(q||p)

R0

e Today: the variational autoencoder of [Kingma and Welling 2014]

2. Generative modeling

w~N@O,I) = gglz) — 3

o Today: the generative adversarial network of [Goodfellow et al 2015]

¢ The paper [Mohamed and Laksminarayanan 2016] clarifies particularly well

Advanced Machine Learning 507163

RECALL VARIATIONAL INFERENCE

We want to solve an inference problem where the correct solution is an “intractable”

distribution with density p(z|x) (e.g. a complicated posterior in a Bayesian inference problem):

o We stipulate a variational model (a family of simpler distributions)

0 ={4p(zlx) : ¢ € }

« If the posterior density is p(z|x) = %, then

q" (zlx) = arg min KL(q(z|x)||p(z]x)) -
qEQ
e Approximate a complicated distribution with the closest member of a tractable family

The ELBO (evidence lower bound) objective:

KLalp(c) = Eq, (102 259 bl
= E (logg(z]x)) — E (log p(z|x))
= E (log q(z]x)) — E (log p(z,2)) + log p(x) ©

o Eg,, (log gy (2lx)) — Eq, (logp(z,x))

Advanced Machine Learning

1517163

ELBO:
F(6.0) = ~Ey, (lo24,(cl) + Eq, (02p0(2.) N

« Note negation (a convention) °

e Also introduction of 6

View this setup as dimension reduction:
* po(x|z) is a probabilistic decoder, converting latent code z to observed data x
* q¢(z|x) is a probabilistic encoder, converting observed data x to latent code z

¢ Now we must choose our approximating family Q...

‘Advanced Machine Learning 1527163

ELBO:
F($,0) = —Eq, (logqg(2lx)) + Eq,, (logpa(z,x)) b - ° 9

* Note negation (a convention)
e Also introduction of 6 °
o Suppose z € R?andx € X

Neural networks as flexible, expressive function families (again):

40(20) = N (1o (x), 73 ()

* Here both p14 and o4 are neural networks that map X' — R?

¢ Perhaps easier to view this from the perspective of a noise variable e:
e~ N(0,I;) and z=ps(x)+o4s(x)Oe — zZx~N (,t/,qg(x),aé(x))

o This reparameterization trick makes it simple to sample from g (z|x)

¢ Note: this gaussian is one basic choice, but many others are used

Advanced Machine Learning 1537163

STOCHASTIC OPTIMIZATION OF ¢

We still have the issue of calculating (and differentiating!) these expectations:

arg max F(¢, 0) = arg max —Eg,, (log g4 (zlx)) + Eq,, (logpe(z,x))

Turn to stochastic optimization and mini-batch gradient descent:
 Draw a noise minibatch €y, ..., ey iid from A (0, 1)
e Draw a data minibatch xy, ..., x)s from the dataset
o Compute 2y = i (xm) + 04 (Xm) © €m

¢ Approximate objective:

M M

N 1 1

F(¢) = _M Z 103q¢(zm|xm) + M ZIOgPQ(mem)
m=1 m=1

o Take its gradient and follow SGD (Adam, etc.) in the usual way until an optima is reached

Optimizing this objective:
e Learns a posterior approximation ¢ (z|x) that can be queried for any data point x
e can be done with a prescribed model p(x, z) to do inference
¢ or can also take gradients in 6 and learn pg — dimension reduction/autoencoding

e We call this general approach variational autoencoding (VAE)

Advanced Machine Learning

1547163

Learn the autoencoder and then:

e Choose a point z; in latent space (not drawing from the posterior!)

« Decode this point with x; ~ pg (xi|z;):

ks
hokoks
TR

)

:%
3¥E

EEH

H

HOECH
H

)

T
R

7'*4
3
-ules

._. 1.331.&1? HH

QANNNSNNNANNANN S SNNNNNS
QAAIVVNMEBAELLELLLU NN~
QAWM GLLLOVVYSC N~~~
QUUVVININNo ot ©VVV Ve -~~~
QOO ININNEEBBVIVI VW - ——
QOODNININIMMNHHEDIDIVY 9w ——
QOOODIMINMMMENNDIVI S - ——
QOOMINMNNMNMNMMDD DD 0w — —
QODOMMIN NN MNMOMDMDD DD P e —
QOOWMMM MMM WM® DD o e =
QOOMMOE MM MM ® S e omm = —
QOMMM MMM 00000 oo —
Gt o007 070700 00 B0 & & O~ O~ 0~ i~
G ddofFororrorrrrssoor~~
Vaaddddorocrrrrrsann~
VaadadddrrrrrrFrTITIRIINN
AdddTTrrrrrrFrFTTIRINN
SAdITTrrrrrrrrrdI™T™2R_ANN
I I g gl <l ol el ol ol ol O U U U L NN

Learns a manifold of simple images and how to generate...

1557163

Advanced Machine Learning

FrROM VAE TO GAN

Variational autoencoders: é--
¢ ...are designed to do inference
e ..are seen as dimension reduction

e can generate, but that is not their specific design...

A useful analogy for the idea of directly solving the data generation problem:

o Q 2004 style $20 note issued October, 2003 Watermark

Leea sty
SO B0 ANC Pitre:

G

Undera UV b é Copper to green
light source, the color-shifting ink

security thread glows green.

https://www.secretservice.gov/data/KnowYourMoney.pdf

Advanced Machine Learning 156 /163

From a deep learning perspective:
¢ True data samples xlD ~ Ddata(x)... (minibatch) draws from the training set
o The latent code z; ~ N(0,1)
» The generator neural network x% = G, (z;)

o The discriminator neural network Dy, (x;) — [0, 1]

Realworld —— sample
images Real
Discriminator B
]
-3
+
3 Fake
E
$ KK Generator [—— Sample
&
-
2
5}

[image from http://cognitivechaos.com/understanding-generative-adversarial-networks/]

¢ The discriminator classifies fake vs real images
¢ The generator adapts to fool the discriminator

¢ This two-player game is repeated...

Advanced Machine Learning 1577163

Realworld —— sample
images

Real

Discriminator
Fake
O Generator | Sample

Specity the following objective:
min n(})ax [Ex~paua (108D (%)) + Exnp(o) (I0g (1 = Dy, (G (2))))]

PG Pp

Latent random variable

o Dy, (x;) gives the probability (€ [0, 1]) that xP is genuine (from data distribution)

1 — Dy, (Gy(zi)) gives the probability that x£ is fake
* ming,, attempts to minimize the probability of being caught as a fake

* maxg, attempts to maximize discriminability (reals 1, fakes |)...

Advanced Machine Learning 158 /163

GENERATIVE ADVERSARIAL NETWORKS

min max [EXNPdam (IOg Dy, (x)) + Ez~p(z) (IOg (1 — Dy, (G¢G (Z))))]

b6 ¢p

Here:
 Discriminator D(x) (blue); generative distribution pg(x) (green); true pga, (x) (black)

Pdata (¥)

« Second panel: if arbitrarily expressive, maxp optimizes to Dy, (x) = e rrme
lata

o If everything works, eventually p¢ is indistinguishable from p,...

Note:
¢ Do not take this objective/optima as absolute truth: original idea, several times updated
e Theory is starting to appear...

¢ Discuss mode collapse and learning/generating the training set

Advanced Machine Learning

1597163

GAN IN ACTION

GAN IN ACTION

Is this good? What could we do with it if it were?

Advanced Machine Learning 1617163

GAN IN ACTION

BN A =9 T
7 P 3= i)
K100 o MR T
B v L

ﬁimnlamlﬂn

P e ey
CEpaL s ﬁnu
e o B~ o

kwalmﬁiﬂﬂdsﬂ

SOME CONTEXT

Implicit probabilistic modeling with neural networks is an exciting area of development:
¢ Heavily demonstrated in the computer vision space
¢ Expanding to many areas of statistical modeling
¢ ..including my own research:

e dynamical systems / state space models (nttps://arxiv.org/abs/1511.07367]
¢ maximum entropy modeling (nttps://arxiv.org/abs/1701.03504)

¢ And many more...

That said, serious skepticism about IPM (and neural networks generally) still exists:
¢ Serious concerns about generalization in GAN (nttps://arxiv.org/abs/1703.00573)
¢ Not even clear why neural networks work well (nctps://arxiv.org/abs/1611.03530]

¢ Heard last year at a major conference: “Deep learning is unrigorous alchemy”...

Deep learning, and in particular the applications and algorithms we have learned here, are
both very exciting and not entirely understood. Have fun and be thoughtful!

Advanced Machine Learning 163/163

