
COURSE ADMIN

TERM TIMELINE

First class
Sep 4/5 Midterm

Final class
Dec 6/10

Python
tutorial

TensorFlow
tutorial

Final project
due

Peter Orbanz John Cunningham

Dates
Python tutorial 6/10 September

Midterm exam 18/22 October

TensorFlow tutorial 24/25 October

Final project due 10 December

Advanced Machine Learning 2 / 188

ASSISTANTS AND GRADING

Teaching Assistants

Andrew Davison Ian Kinsella Peter Lee Gabriel Loaiza

Office Hours Mon/Tue 5:30-7:30pm, Room 1025, Dept of Statistics, 10th floor SSW

Class Homepage

https://www.adavison.co.uk/teaching/AdvancedML18/

Homework
• Some homework problems and final project require coding
• Coding: Python
• Homework due: Tue/Wed at 4pm – no late submissions, please
• You can drop two homeworks from your final score

Grade
Homework + Midterm Exam + Final Project

20% 40% 40%

Advanced Machine Learning 3 / 188

READING

The relevant course material are the slides.

Books (optional)

See class homepage for references.

Advanced Machine Learning 4 / 188

TOPICS (TENTATIVE)

Part I (Orbanz)

• Markov and hidden Markov models
• Graphical models
• Sampling and MCMC algorithms
• Variational inference
• Neural network basics

Part II (Cunningham)

• NN software
• Neural networks: convolutional,

recurrent, etc.
• Reinforcement learning
• Dimension reduction and autoencoders

Advanced Machine Learning 5 / 188

INTRODUCTION

RECALL PREVIOUS TERM

sgn(〈vH, x〉 − c) < 0

sgn(〈vH, x〉 − c) > 0

Supervised learning Unsupervised learning

Classification Clustering (mixture models)
Problems Regression HMMs

Dimension reduction (PCA)

Solutions Functions Distributions

Advanced Machine Learning 7 / 188

OUR MAIN TOPICS

Neural networks

• Define functions

• Represented by directed graph

Graphical models

• Define distributions

• Represented by directed graph

• Each vertex represents a function
• Incoming edges: Function arguments
• Outgoing edges: Function values
• Learning: Differentiation/optimization

• Each vertex represents a distribution
• Incoming edges: Conditions
• Outgoing edges: Draws from distribution
• Learning: Estimation/inference

Advanced Machine Learning 8 / 188

Neural networks Graphical models

v1 v2 v3

y2 = φ(vtx)

x1 x2 x3

φ

φ φ φ

ψ ψ ψ

y1 y2 y3

. . .

. . .

...
...

...

. . .

. . .

Advanced Machine Learning 9 / 188

NNS AND GRAPHICAL MODELS

Neural networks
• Representation of function using a graph
• Layers:

x g f

• Symbolizes: f (g(x))

“f depends on x only through g”

Graphical models
• Representation of a distribution using a graph
• Layers:

X Y Z

• Symbolizes: p(x, z, y) = p(z|y)p(y|x)p(x)

“Z is conditionally independent of X given Y”

v11
v12

v13 v21

v22
v23

v31

v32
v33

y1 = φ(v1
tx) y2 = φ(v2

tx) y3 = φ(v3
tx)

x1 x2 x3

φ φ φ

Advanced Machine Learning 10 / 188

TOPICS (TENTATIVE)

Part I (Orbanz)

• Markov and hidden Markov models
• Graphical models
• Sampling and MCMC algorithms
• Variational inference
• Neural network basics

Part II (Cunningham)

• NN software
• Neural networks: convolutional,

recurrent, etc.
• Reinforcement learning
• Dimension reduction and autoencoders

Advanced Machine Learning 11 / 188

LEARNING AND STATISTICS

Task
Balance the pendulumn upright by moving the sled left and right.
• The computer can control only the motion of the sled.
• Available data: Current state of system (measured 25 times/second).

Formalization
State = 4 variables (sled location, sled velocity, angle, angular velocity)

Actions = sled movements

The system can be described by a function

f : S ×A → S
(state, action) 7→ state

Advanced Machine Learning 12 / 188

LEARNING AND STATISTICS

Formalization
State = 4 variables (sled location, sled velocity, angle, angular velocity)

Actions = sled movements

The system can be described by a function

f : S ×A → S
(state, action) 7→ state

Advanced Machine Learning 12 / 188

LEARNING AND STATISTICS

Advanced Machine Learning 13 / 188

LEARNING AND STATISTICS

After each run
Fit a function

f : S ×A → S
(state, action) 7→ state

to the data obtained in previous runs.

Running the system involves:
1. The function f , which tells the system “how the world works”.

2. An optimization method that uses f to determine how to move towards the optimal state.

Note well
Learning how the world works is a regression problem.

Advanced Machine Learning 14 / 188

SEQUENTIAL DATA AND MARKOV MODELS

MOTIVATION: PAGERANK

Simple random walk
Start with a graph G. Define a random sequence of vertices as follows:
• Choose a vertex X1 uniformly at random.
• Choose a vertex X2 uniformly at random from the neighbors of X1. Move to X2.
• Iterate: At step n, uniformly sample a neighbor Xn of Xn−1, and move to Xn.

This is called simple random walk on G.

Google’s PageRank Algorithm
To sort the web pages matching a search query by importance, PageRank:

1. Defines a graph G whose vertices are web pages and whose edges are web links.

2. Computes the probability distribution on vertices x in G given by

Pn(x) = P(Xn = x) where X1, . . .Xn is a simple random walk on G

and n is very large.

We will try to understand (a) why and (b) how Pn can be computed.

Advanced Machine Learning 16 / 188

SEQUENTIAL DATA

So far: I.i.d. sequences
We have assumed that samples are of the form

X1 = x1,X2 = x2, . . . where X1,X2, . . . ∼iid P

for some distribution P. In particular, the order of observations does not matter.

Now: Dependence on the past
We now consider sequences in which the random variable Xn can be stochastically dependent
on X1, . . . ,Xn−1, so we have to consider conditional probabilities of the form

P(Xn = xn|X1 = x1, . . . ,Xn−1 = xn−1) .

Application examples
• Speech and handwriting recognition.
• Time series, e.g. in finance. (These often assume a continuous index. Our index n is

discrete.)
• Simulation and estimation algorithms (Markov chain Monte Carlo).
• Random walk models (e.g. web search).

Advanced Machine Learning 17 / 188

MARKOV MODELS

Markov models
The sequence (Xn)n is called a Markov chain of order r if Xn depends only on a fixed number
r of previous samples, i.e. if

P(Xn = xn|X1 = x1, . . . ,Xn−1 = xn−1) = P(Xn = xn|Xn−r = xn−r, . . . ,Xn−1 = xn−1)

If we simply call (Xn)n a Markov chain, we imply r = 1.

Initial state
The first state in the sequence is special because it does not have a "past", and is usually denoted
X0.

Example: r = 2

X0 = x0, X1 = x1, X2 = x2, X3 = x3, X4 =?

X4 is independent
of these given X2, X3

X4 may depend on these

Advanced Machine Learning 18 / 188

GRAPHICAL REPRESENTATION

A simple binary chain
Suppose X = {0, 1}.

0 1

p0→1

p1→0

p1→1p0→0

• We regard 0 and 1 as possible "states" of X, represented as vertices in a graph.
• Each pair Xn−1 = s,Xn = t in the sequence is regarded as a "transition" from s to t and

represented as an edge in the graph.
• Each edge s→ t is weighted by the probability

ps→t := P(Xn = t|Xn−1 = s) .

State space
The elements of the sample space X are called the states of the chain. X is often called the state
space. We generally assume that X is finite, but Markov chains can be generalized to infinite
and even uncountable state spaces.

Advanced Machine Learning 19 / 188

GRAPHICAL REPRESENTATION

First example: Independent coin flips
Suppose X is a biased coin with P(Xn = 1) = p independently of Xn−1. In other words, the
sequence (Xn) is iid Bernoulli with parameter p.

0 1

p

1− p

p1− p

Breaking independence
Here is a simple modification to the chain above; only p1→0 and p1→1 have changed:

0 1

p

0

11− p

This is still a valid Markov chain, but the elements of the sequence are no longer independent.

Advanced Machine Learning 20 / 188

GRAPHICAL REPRESENTATION

Observation
The graph representation is only possible if ps→t is independent of n. Otherwise we would have
to draw a different graph for each n.

If ps→t does not depend on n, the Markov chain is called stationary.

Transition matrix
The probabilities ps→t are called the transition probabilities of the Markov chain. If |X| = d,
the d × d-matrix

p := (pi→j)j,i≤d =

p1→1 . . . pd→1
...

...
p1→d . . . pd→d


is called the transition matrix of the chain. This is precisely the adjacency matrix of the graph
representing the chain. Each column is a probability distribution on d events.

Advanced Machine Learning 21 / 188

GRAPHICAL REPRESENTATION

Complete description of a Markov chain
The transition matrix does not completely determine the chain: It determines the probability of
a state given a previous state, but not the probability of the starting state. We have to
additionally specify the distribution of the first state.

Initial distribution
The distribution of the first state, i.e. the vector

Pinit := (P(X0 = 1), . . . ,P(X0 = d)) ,

is called the initial distribution of the Markov chain.

Representing stationary Markov chains
Any stationary Markov chain with finite state space can be completely described by a transition
matrix p and an initial distribution Pinit. That is, the pair (p,Pinit) completely determines the
joint distribution of the sequence (X0,X1, . . .).

Advanced Machine Learning 22 / 188

RANDOM WALKS ON GRAPHS

Simple random walk
Suppose we are given a directed graph G (with unweighted edges). We had already mentioned
that the simple random walk on G is the vertex-valued random sequence X0,X1, . . . defined as:

• We select a vertex X0 in G uniformly at random.
• For n = 1, 2, . . ., select Xn uniformly at random from the children of Xn−1 in the graph.

Markov chain representation
Clearly, the simple random walk on a graph with d vertices is a Markov chain with

Pinit =
(1

d
, . . . ,

1
d

)
and pi→j =

{
1

edges out of i if i links to j
0 otherwise

Advanced Machine Learning 23 / 188

RANDOM WALKS AND MARKOV CHAINS

Generalizing simple random walk
We can generalize the idea of simple random walk by substituting the uniform distributions by
other distributions. To this end, we can weight each edge in the graph by a probability of
following that edge.

Adjacency matrix
If the edge weights are proper probabilities, each row of the adjacency matrix must sum to one.
In other words, the matrix is the transition matrix of a Markov chain.

Random walks and Markov chains
If we also choose a general distribution for the initial state of the random walk, we obtain a
completely determined Markov chain. Hence:

Any Markov chain on a finite state space is a random walk on a weighted graph and vice versa.

Advanced Machine Learning 24 / 188

INTERNET SEARCH

Queries
The first step in internet search is query matching:

1. The user enters a search query (a string of words).

2. The search engine determines all web pages indexed in its database which match the
query.

This is typically a large set. For example, Google reports ca 83 million matches for the query
"random walk".

The ranking problem
• For the search result to be useful, the most useful link should with high probability be

among the first few matches shown to the user.
• That requires the matching results to be ranked, i.e. sorted in order of decreasing

"usefulness".

Advanced Machine Learning 25 / 188

POPULARITY SCORING

Available data
Using a web crawler, we can (approximately) determine the link structure of the internet. That
is, we can determine:
• Which pages there are.
• Which page links which.

A web crawler cannot determine:
• How often a link is followed.
• How often a page is visited.

Web graph
The link structure can be represented as a graph with

vertices = web pages and edges = links.

Advanced Machine Learning 26 / 188

RANDOM WALK NETWORK MODELS

Key idea
The popularity of a page x is proportional to the probability that a "random web surfer" ends up
on page x after a n steps.

Probabilistic model
The path of the surfer is modeled by a random walk on the web graph.

Modeling assumptions
Two assumptions are implicit in this model:

1. Better pages are linked more often.

2. A link from a high-quality page is worth more than one from a low-quality page.

Remarks
• We will find later that the choice of n does not matter.
• To compute the popularity score, we first have to understand Markov chains a bit better.

Advanced Machine Learning 27 / 188

STATE PROBABILITIES

Probability after n = 1 steps
If we know the initial state, then

P(X1 = s1 |X0 = s0) = ps0→s1
.

P1 describes the probability of X1 if we do not know the starting state (i.e. the probability before
we start the chain):

P1(s1) = P(X1 = s1) =
∑
s0∈X

P(X1 = s1 |X0 = s0)Pinit(s0)

=
∑
s0∈X

ps0→s1
Pinit(s0) .

Matrix representation
Recall that p is a d × d-matrix and Pinit a vector of length d. The equation for P1 above is a
matrix-vector product, so

P1 = p · Pinit .

Advanced Machine Learning 28 / 188

STATE PROBABILITIES

Probability after n = 2 steps
The same argument shows that P2 is given by

P2(s2) =
∑
s1∈X

ps1→s2
P1(s1) ,

hence
P2 = p · P1 = p · p · Pinit .

For arbitary n

Pn = pnPinit

Advanced Machine Learning 29 / 188

LIMITS AND EQUILIBRIA

Limiting distribution
Instead of considering Pn for a specific, large n, we take the limit

P∞ := lim
n→∞

Pn = lim
n→∞

pnPinit ,

provided that the limit exists.

Observation
If the limit P∞ exists, then

p · P∞ = p · lim
n→∞

pnPinit = lim
n→∞

pnPinit = P∞ ,

which motivates the next definition.

Equilibrium distribution
If p is the tansition matrix of a Markov chain, a distribution P on X which is invariant under p in
the sense that

p · P = P

is called an equilibrium distribution or invariant distribution of the Markov chain.

Advanced Machine Learning 30 / 188

WHAT CAN GO WRONG?

Problem 1: The equilibrium distribution may not be unique

3 2

1

For this chain, both P = (0, 1, 0) and P′ = (0, 0, 1) are valid equilibria. Which one emerges
depends on the initial state and (if we start in state 1) on the first transition.

Remedy
Require that there is a path in the graph (with non-zero probability) from each state to every
other state. A Markov chain satisfying this condition is called irreducible.

Advanced Machine Learning 31 / 188

WHAT CAN GO WRONG?

Recall that a sequence in R does not have a limit if it "oscillates". For example,

lim
n

1n = 1 but lim
n

(−1)n does not exist

Problem 2: The limit may not exist
• The chain on the right has no limit distribution.
• If we start e.g. in state 0, then:

• 0 can only be reached in even steps.
• 1 only in odd steps.

• The distribution Pn oscillates between

Peven =

(
1
0

)
and Podd =

(
0
1

)
.

0 1

Advanced Machine Learning 32 / 188

WHAT CAN GO WRONG?

Remedy
To prevent this (particular) problem, we can add two edges:

0 1

Now each state is reachable in every step.

The problem (at least this example) is that we have to leave the state before we can return to it.
We prevent this, we introduce the following definition.

Aperiodic chains
We call a stationary Markov chain aperiodic if, for every state s,

P(Xn = s |Xn−1 = s) = ps→s > 0 .

In short, a stationary chain is aperiodic if the transition matrix has non-zero diagonal.

Advanced Machine Learning 33 / 188

EQUILIBRIUM DISTRIBUTIONS

We have introduced two definitions which prevent two rather obvious problems. Surprisingly, these definitions are all we need
to guarantee limits.

Theorem
Suppose a Markov chain (p,Pinit) is stationary, and for each state s ∈ X:

1. There is a path (with non-zero probability) from s to every other state (i.e. the chain is
irreducible).

2. ps→s > 0 (i.e. the chain is aperiodic).
Then:
• The limit distribution P∞ exists.
• The limit distribution is also the equlibrium distribution.
• The equilibrium distribution is unique.

Advanced Machine Learning 34 / 188

COMPUTING THE EQUILIBRIUM

Power method
If the the transition matrix p makes the chain irreducible and aperiodic, we know that

equilibrium distribution = limit distribution .

This means we can approximate the equilibrium P∞ by Pn: We start with any distribution Pinit

(e.g. uniform) and repeatedly multiply by p:

Pn+1 = p · Pn

We can threshold the change between steps, e.g. by checking ‖Pn+1 − Pn‖ < τ for some small
τ .

Remark: Eigenstructure
The power method can be regarded as an eigenvector computation. The definition

P = p · P

of the equilibrium means that P = P∞ is an eigenvector of p with eigenvalue 1. If p is
irreducible and aperiodic, it can be shown that 1 is the largest eigenvalue.

Advanced Machine Learning 35 / 188

PAGERANK

Constructing the transition matrix
We start with the web graph and construct the transition matrix of simple random walk, i.e.

aij :=

{
1

edges out of i if i links to j
0 otherwise

A chain defined by A := (aij) will almost certainly not be irreducible (think of web pages
which do not link anywhere). We therefore regularize A by defining

p := (1− α)A +
α

d

1 · · · 1
...

...
1 · · · 1


for some small α ∈ (0, 1).
Clearly, this makes p both irreducible and aperiodic.

Computing the equilibrium
Given p, the equilibrium distribution is computed using the power method. Since the web
changes, the power method can be re-run every few days with the previous equilibrium as initial
distribution.

Advanced Machine Learning 36 / 188

THE RANDOM SURFER AGAIN

We can now take a more informed look at the idea of a random web surfer:
• Suppose the surfer is more likely to start on a popular page than on an unpopular one.
• In terms of the popularity model, this means

X0 ∼ Pequ ,

where Pequ is the equilibrium distribution of the chain.
• After following any number of links n (with probabilities given by the transition matrix p),

Pn = pnPequ = Pequ .

• In this sense, Pequ is really the consistent solution to our problem, even if we compute it by
starting the random walk from e.g. a uniform initial distribution instead.

• In particular, it does not matter how we choose n in the model.

Advanced Machine Learning 37 / 188

EXAMPLE

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

nz = 2636
Adjacence matrix of the web graph of 500 web pages. The root

(index 0) is www.harvard.edu.

0 100 200 300 400 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Equilibrium distribution computed by PageRank.

See K. Murphy, "Machine Learning", MIT Press 2012.Advanced Machine Learning 38 / 188

GRAPHICAL MODELS

GRAPHICAL MODELS

A graphical model represents the dependence structure within a set of random variables
as a graph.

Overview
Roughly speaking:
• Each random variable is represented by vertex.
• If Y depends on X, we draw an edge X → Y .
• For example:

X Y

Z

This says: “X depends on Z, and Y depends on Z”.
• We have to be careful: The above does not imply that X and Y are independent. We have

to make more precise what depends on means.

Advanced Machine Learning 40 / 188

We will use the notation:

L(X) = distribution of the random variable X

L(X|Y) = conditional distribution of X given Y

(L means “law”.)

Reason
• If X is discrete, L(X) is usually given by a mass function P(x).
• If it is continuous, L(X) is usually given by a density p(x).
• With the notation above, we do not have to distinguish between discrete and continuous

variables.

Advanced Machine Learning 41 / 188

DEPENDENCE AND INDEPENDENCE

Dependence between random variables X1, . . . ,Xn is a property of their
joint distribution L(X1, . . . ,Xn).

Recall
Two random variables are stochastically independent, or independent for short, if their joint
distribution factorizes:

L(X, Y) = L(X)L(Y)

For densities/mass functions:

P(x, y) = P(x)P(y) or p(x, y) = p(x)p(y)

Dependent means not independent.

Intuitively
X and Y are dependent if knowing the outcome of X provides any information about the
outcome of Y .

More precisely:
• If someone draws (X, Y) simultanuously, and only discloses X = x to you, does that

change your mind about the distribution of Y? (If so: Dependence.)
• Once X is given, the distribution of Y is the conditional L(Y|X = x).
• If that is still L(Y), as before X was drawn, the two are independent. If
L(Y|X = x) 6= L(Y), they are dependent.

Advanced Machine Learning 42 / 188

CONDITIONAL INDEPENDENCE

Definition
Given random variables X, Y , Z, we say that X is conditionally independent of Y given Z if

L(X, Y|Z = z) = L(X|Z = z)L(Y|Z = z) .

That is equivalent to
L(X|Y = y, Z = z) = L(X|Z = z) .

Notation

X ⊥⊥Z Y

Intuitively

X and Y are dependent given Z = z if, although Z is known, knowing the outcome of X provides
additional information about the outcome of Y .

Advanced Machine Learning 43 / 188

EXAMPLE: MARKOV CHAINS (OF ORDER 1)

Consider a Markov chain (X0,X1,X2):

X0 = x0,X1 = x1,X2 =?

X2 is conditionally independent of X0 given X1:

L(X2|X1 = x1,X0 = x0) = L(X2|X1 = x1)

However: If we do not condition on X1, then X2 need not be independent of X0:

L(X2|X0 = x0) 6= L(X2)

In general
For a Markov chain of order 1,

Xn ⊥⊥Xn−1 Xn−2, . . . ,X0

but not
Xn ⊥⊥ Xn−2, . . . ,X0

Advanced Machine Learning 44 / 188

GRAPHICAL MODEL NOTATION

Factorizing a joint distribution
The joint probability of random variables X1, . . . ,Xn can always be factorized as

L(X1, . . . ,Xn) = L(Xn|X1, . . . ,Xn−1)L(Xn−1|X1, . . . ,Xn−2) · · · L(X1) .

Note that we can re-arrange the variables in any order.

If there are conditional independencies, we can remove some variables from the conditionals:

L(X1, . . . ,Xn) = L(Xn|Xn)L(Xn−1|Xn−1) · · · L(X1) ,

where Xi is the subset of X1, . . . ,Xn on which Xi depends.

Definition
Let X1, . . . ,Xn be random variables. A (directed) graphical model represents a factorization
of joint distribution L(X1, . . . ,Xn) as follows:
• Factorize L(X1, . . . ,Xn).
• Add one vertex for each variable Xi.
• For each variable Xi, add and edge from each variable Xj ∈ Xi to Xi.

That is: An edge Xj → Xi is added if L(X1, . . . ,Xn) contains the factor L(Xi|Xj).

Advanced Machine Learning 45 / 188

EXAMPLE: MARKOV CHAINS

Markov chain of order r = 1

X0 X1 X2 X3

Markov chain of order r = 2

X0 X1 X2 X3

Note these graphs are graphical models, not Markov chain transition diagrams as those on the Markov chain slides. Here, each
node is a random variable. In transition diagrams, each node represents a possible value of these variables.

Advanced Machine Learning 46 / 188

GRAPHICAL MODEL NOTATION

Lack of uniqueness
The factorization is usually not unique, since e.g.

L(X, Y) = L(X|Y)L(Y) = L(Y|X)L(X) .

That means the direction of edges is not generally determined.

Remark
• If we use a graphical model to define a model or visualize a model, we decide on the

direction of the edges.
• Estimating the direction of edges from data is a very difficult (and very important)

problem. This is one of the main subjects of a research field called causal inference or
causality.

Advanced Machine Learning 47 / 188

A simple example

X Y

Z

X ⊥⊥Z Y

An example with layers

. . .

. . .

Layer 1

Layer 2

All variables in the (k + 1)st layer are
conditionally independent given the

variables in the kth layer.

Advanced Machine Learning 48 / 188

WORDS OF CAUTION I

X Y

Z

X ⊥⊥Z Y

Important
• X and Y are not independent, independence holds only conditionally on Z.
• In other words: If we do not observe Z, X and Y are dependent, and we have to change the

graph:

X Y or X Y

Advanced Machine Learning 49 / 188

WORDS OF CAUTION II

X Y

Z

Conditioning on Z makes X and Y dependent.

Example
• Suppose we start with two indepedent normal variables X and Y .
• Z = X + Y .

If we know Z, and someone reveals the value of Y to us, we know everything about X.

This effect is known as explaining away. We will revisit it later.

Advanced Machine Learning 50 / 188

HIDDEN MARKOV MODELS

OVERVIEW

Motivation
We have already used Markov models to model sequential data. Various important types of
sequence data (speech etc) have long-range dependencies that a Markov model does not capture
well.

Hidden Markov model
• A hidden Markov model is a latent variable model in which a sequence of latent (or

"hidden") variables is generated by a Markov chain.
• These models can generate sequences of observations with long-range dependencies, but

the explanatory variables (the latent variables) are Markovian.
• It turns out that this is a useful way to model dependence for a variety of important

problems, including speech recognition, handwriting recognition, and parsing problems in
genetics.

Advanced Machine Learning 52 / 188

HIDDEN MARKOV MODELS

Definition
A (discrete) hidden Markov model (HMM) consists of:
• A stationary Markov chain (Qinit, q) with states {1, . . . ,K}, initial distribution Qinit and

transition matrix q.
• A (discrete) emission distribution, given by a conditional probability P(x|z).

The model generates a sequence X1,X2, . . . by:
1. Sampling a sequence Z1, Z2, . . . from the Markov chain (Qinit, q).

2. Sampling a sequence X1,X2, . . . by independently sampling Xi ∼ P(. |Zi).
In a continuous HMM, the variables Xi have continuous distributions, and P(x|z) is substituted
by a density p(x|z). The Markov chain still has finite state space [K].

Z1 Z2 · · · Zn−1 Zn

X1 X2 · · · Xn−1 Xn

Advanced Machine Learning 53 / 188

NOTATION

We will see a lot of sequences, so we use the "programming" notation

x1:n := (x1, . . . , xn)

Advanced Machine Learning 54 / 188

EXAMPLE: DISHONEST CASINO

This example is used in many textbooks and is very simple, but it is useful to understand the conditional independence structure.

Problem
• We consider two dice (one fair, one loaded).
• At each roll, we either keep the current dice, or switch to the other one with a certain

probability.
• A roll of the chosen dice is then observed.

�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������

���� ����

���

����

Advanced Machine Learning 55 / 188

EXAMPLE: DISHONEST CASINO

�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������

���� ����

���

����

HMM
• States: Zn ∈ {fair, loaded}.
• Sample space: X = {1, . . . , 6}.

• Transition matrix: q =

(
0.95 0.05
0.10 0.90

)
• Emission probabilities:

P(x|z = fair) = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)
P(x|z = loaded) = (1/10, 1/10, 1/10, 1/10, 1/10, 5/10)

Advanced Machine Learning 56 / 188

EXAMPLE: DISHONEST CASINO

�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������

���� ����

���

����

Conditional independence
• Given the state (=which dice), the outcomes are independent.
• If we do not know the current state, observations are dependent!
• For example: If we observe a sequence of sixes, we are more likely to be in state "loaded"

than "fair", which increases the probability of the next observation being a six.

Advanced Machine Learning 57 / 188

HMM: ESTIMATION PROBLEMS

Filtering problem
• Given: Model and observations, i.e. :

1. Transition matrix q and emission distribution P(. |z).
2. Observed sequence x1:N = (x1, . . . , xN).

• Estimate: Probability of each hidden variable, i.e. Q(Zn = k|x1:n)

Variant: Smoothing problem, in which we estimate Q(Zn = k|x1:N) instead.

Decoding problem
• Given: Model (q and P(. |z)) and observed sequence x1:N .
• Estimate: Maximum likelihood estimates ẑ1:N = (̂z1, . . . , ẑN) of hidden states.

Learning problem
• Given: Observed sequence x1:N .
• Estimate: Model (i.e. q and P(. |z)).

Advanced Machine Learning 58 / 188

EXAMPLES

Before we look at the details, here are examples for the dishonest casino.

0 50 100 150 200 250 300
0

0.5

1

roll number

p
(l
o
a
d
e
d
)

filtered

Filtering result.

Gray bars: Loaded dice used.
Blue: Probability P(Zn = loaded|x1:n)

0 50 100 150 200 250 300
0

0.5

1

roll number

M
A

P
 s

ta
te

 (
0
=

fa
ir
,1

=
lo

a
d
e
d
)

Viterbi

Decoding result.

Gray bars: Loaded dice used.
Blue: Most probable state Zn .

Advanced Machine Learning 59 / 188

PROBABILITIES OF HIDDEN STATES

The first estimation problem we consider is to estimate the probabilities Q(zn|x1:n).

Idea
We could use Bayes’ equation (recall: P(a|b) =

P(b|a)P(a)
P(b)) to write:

Q(k|xn) =
P(xn|k)Q(Zn = k)∑K

k=1 P(xn|k)Q(Zn = k)
.

Since we know the Markov chain (Qinit, q), we can compute Q, and the emission probabilities
P(xn|k) are given.

Filtering
The drawback of the solution above is that it throws away all information about the past. We get
a better estimate of Zn by taking x1, . . . , xn−1 into account. Reducing the uncertainty in Zn
using x1, . . . , xn−1 is called filtering.

Advanced Machine Learning 60 / 188

FILTERING

Filtering problem
Our task is to estimate the probabilities Q(zn|x1:n). Since the sequence has length n and each Zi

can take K possible values, this is a N × K-matrix Q̂, with entries

Q̂nk := Q(Zn = k|x1:n) .

Decomposition using Bayes’ equation
We can use Bayes’ equation (recall: P(a|b) =

P(b|a)P(a)
P(b)) to write:

Q(zn|x1:n) = Q(zn|xn, x1:(n−1)) =
P(xn|zn, x1:(n−1))Q(zn|x1:(n−1))∑K

zn=1 P(xn|zn, x1:(n−1))Q(zn|x1:(n−1))

This is the emission probability
P(xn|zn) (conditional independence!)

This is the crucial term

Normalization

Advanced Machine Learning 61 / 188

FILTERING

Reduction to previous step
The crucial idea is that we can use the results computed for step n− 1 to compute those for step
n:

Q(Zn = k|x1:(n−1)) =
K∑

l=1

Q(Zn = k|Zn−1 = l)︸ ︷︷ ︸
= qlk (transition matrix)

Q(Zn−1 = l|x1:(n−1))︸ ︷︷ ︸
= Q̂(n−1)l

Summary
In short, we can compute the numerator in the Bayes equation as

ank := P(xn|zn)
K∑

l=1

qlkQ̂(n−1)l .

The normalization term is
K∑

zn=1

(
P(xn|zn)

K∑
l=1

qlkQ̂(n−1)l

)
=

K∑
j=1

anj .

Advanced Machine Learning 62 / 188

FILTERING

Solution to the filtering problem: The forward algorithm
Given is a sequence (x1, . . . , xN).

For n = 1, . . . ,N, compute

ank := P(xn|zn)
K∑

l=1

qlkQ̂(n−1)l ,

and
Q̂nk =

ank∑K
j=1 anj

.

This method is called the forward algorithm.

Advanced Machine Learning 63 / 188

HMMS AND MIXTURE MODELS

Parametric emission model
We usually define the emission probabilities P(xn|zn) using a parametric model P(x|θ) (e.g. a
multinomial or Gaussian model). Then

P(xn|Zn = k) := P(xn|θk) ,

i.e. the emission distribution of each state k is defined by a parameter value θk .

· · · Zn−1 Zn Zn+1 · · ·

· · · Xn−1 Xn Xn+1 · · ·

Relation to mixture models
If we just consider a single pair (Zn,Xn), this defines a finite mixture with K clusters:

π(xn) =
K∑

k=1

ckP(xn|θk) =
K∑

k=1

Q(Zn = k)P(xn|θk)

Advanced Machine Learning 64 / 188

EM FOR HMMS

Recall: EM for mixtures
E-step M-step

Soft assignments E[Mik] = Pr(mi = k) cluster weights ck
component parameters θk

HMM case
• For mixtures, Pr{mi = k} = ck . In HMMs, the analogous probability Pr{Zn = k} is

determined by the transition probabilities.
• The analogue of the soft assignments aik computed for mixtures are state probabilities

bnk = Q(Zn = k|θ, x1:n) .

• Additionally, we have to estimate the transition matrix q of the Markov chain.

EM for HMMs
E-step M-step

Transition probabilities qkj component parameters θk
State probabilities bnk

Advanced Machine Learning 65 / 188

EM FOR HMMS

M-step
The M-step works exactly as for mixture models. E.g. for Gaussian emission distributions with
parameters µk and σ2

k ,

µk =

∑N
n=1 bnkxn∑N

n=1 bnk
and σ2

k =

∑N
n=1 bnk(xn − µk)

2∑N
n=1 bnk

State probabilities substituted
for assignment probabilities

E-step
• Computing the state probabilities is a filtering problem:

bnew
nk = Q(Zn = k|θold, x1:n) .

The forward algorithm assumes the emission probabilities are known, so we use the
emission parameters θold computed during the previous M-step.

• Estimating the transition probabilities is essentially a filtering-type problem for pairs of
states and can also be solved recursively, but we will skip the details since the equations
are quite lengthy.

Advanced Machine Learning 66 / 188

APPLICATION: SPEECH RECOGNITION

Problem
Given speech in form of a sound signal, determine the words that have been spoken.

Method
• Words are broken down into small sound units (called phonemes). The states in the HMM

represent phonemes.
• The incoming sound signal is transformed into a sequence of vectors (feature extraction).

Each vector xn is indexed by a time step n.
• The sequence x1:N of feature vectors is the observed data in the HMM.

Advanced Machine Learning 67 / 188

PHONEME MODELS

Phoneme
A phoneme is defined as the smallest unit of sound in a language that distinguishes between
distinct meanings. English uses about 50 phonemes.

Example

Zero Z IH R OW Six S IH K S
One W AH N Seven S EH V AX N
Two T UW Eight EY T

Three TH R IY Nine N AY N
Four F OW R Oh OW
Five F AY V

Subphonemes
Phonemes can be further broken down into subphonemes. The standard in speech processing is
to represent a phoneme by three subphonemes ("triphons").

Advanced Machine Learning 68 / 188

PREPROCESSING SPEECH

A
m

pl
itu

de

Time

Fr
eq

ue
nc

y

Time

Feature extraction
• A speech signal is measured as amplitude over time.
• The signal is typically transformed into various types of features, including (windowed)

Fourier- or cosine-transforms and so-called "cepstral features".
• Each of these transforms is a scalar function of time. All function values for the different

transforms at time t are collected in a vector, which is the feature vector (at time t).

Advanced Machine Learning 69 / 188

LAYERS IN PHONEME MODELS
4 WORTKETTENERKENNUNG FÜR GROSSES VOKABULAR 132

4.1.2 HMMs für Phonemstrukturen

Wörter:

Phoneme:

Subphoneme:

akustische Vektoren:

Sprachsignal:

THIS BOOK IS GOOD

th i s b uh k i z g uh d

. . . b b uh uh uh k kcl rel on off cl rel

. . .

. . .

. . .

Abbildung 4.2: Ebenen der akustischen Modellierung.

Die gesprochene Sprache kann auf jeder dieser Ebenen modelliert werden.

Spracherkennung, 12. März 2002 WS 01/02

Words

Phonemes

Subphonemes

Features

Speech signal

HMM speech recognition
• Training: The HMM parameters (emission parameters and transition probabilities) are

estimated from data, often using both supervised and unsupervised techniques.
• Recognition: Given a language signal (= observation sequence x1:N , estimate the

corresponding sequence of subphonemes (= states z1:N). This is a decoding problem.

Advanced Machine Learning 70 / 188

SPEAKER ADAPTATION

Factory model
Training requires a lot of data; software is typically shipped with a model trained on a large
corpus (i.e. the HMM parameters are set to "factory settings").

The adaptation problem
• The factory model represents an average speaker. Recognition rates can be improved

drastically by adapting to the specific speaker using the software.
• Before using the software, the user is presented with a few sentences and asked to read

them out, which provides labelled training data.

Speaker adaptation
• Transition probabilities are properties of the language. Differences between speakers

(pronounciation) are reflected by the emission parameters θk .
• Emission probabilities in speech are typically multi-dimensional Gaussians, so we have to

adapt means and covariance matrices.
• The arguably most widely used method is maximum likelihood linear regression

(MLLR), which uses a regression technique to make small changes to the covariance
matrices.

Advanced Machine Learning 71 / 188

FURTHER READING

More details on HMMs
If you feel enthusiastic, the following books provide more background:
• David Barber’s "Bayesian reasoning and machine learning" (available online).
• Chris Bishop’s "Pattern recognition and machine learning".
• Many books on speech, e.g. Rabiner’s classic "Fundamentals of speech recognition".

HTK
If you would like to try out speech recognition software, have a look at the HTK (HMM
Toolkit) package, which is the de-facto standard in speech research. HTK implements both
HMMs for recognition and routines for feature extraction.

Advanced Machine Learning 72 / 188

BAYESIAN MIXTURE MODELS

OVERVIEW

The concept of a Bayesian mixture will come up a few times in this class, so we will briefly
review it on the next few slides.

Idea
• Recall that the defining idea of a Bayesian model is to treat the model parameters as

random variables.
• That requires specifying a distribution for those parameters, known as the prior

distribution.
• Instead of asking for an value of the parameters estimated from data (a point estimate), we

determine their conditional distribution given the data. This distribution is called the
posterior distribution.

• A Bayesian mixture model is a finite mixture model whose model parameters are treated
as random.

Inference: Sampling
These models are examples of models in which the exact posterior is intractable. Inference uses
Markov chain Monte Carlo sampling, which will be our main topic for the last two lectures.

Advanced Machine Learning 74 / 188

PARAMETERS OF BAYESIAN MIXTURES

Recall: Finite mixture models

π(x) =
K∑

k=1

ckp(x|θk)

The model parameters are the component parameters θk and the weights ck . For a Bayesian
version of the model, we hence have to generate random component parameters Θ1, . . . ,ΘK
and random weights C1, . . . ,CK .

More precisely
• The mixture components p(x|θ) are an exponential family model (as discussed in SML).
• Which prior we choose for Θ depends on the choice of p.
• The prior of the vector (C1, . . . ,CK) is always chose as a Dirichlet distribution.

The Dirichlet distribution
The Dirichlet distribution, for some specified number K ∈ N, generates a random vector
(C1, . . . ,CK) with the property that Ck > 0 for all k = 1, . . . ,K and

∑
k≤K Ck = 1. In other

words, (C1, . . . ,CK) is a (randomly generated) probability distribution on K categories.

Advanced Machine Learning 75 / 188

THE DIRICHLET DISTRIBUTION

Recall: Probability simplex
The set of all probability distributions on K events is the simplex
∆K := {(c1, . . . , ck) ∈ RK | ck ≥ 0 and

∑
k cK = 1}.

e1

e2 e3

c1

c2

c3

Dirichlet distribution
The Dirichlet distribution is the distribution on ∆K with density

qDirichlet(c1:K |α, g1:K) :=
1

K(α, g1:K)
exp
(K∑

k=1

(αgk − 1) log(ck)
)

Parameters:
• g1:K ∈ ∆K : Mean parameter, i.e. E[c1:K] = g1:K .
• α ∈ R+: Concentration.

Larger α→ sharper concentration around g1:K .

Advanced Machine Learning 76 / 188

THE DIRICHLET DISTRIBUTION

In all plots, g1:K =
(1

3 ,
1
3 ,

1
3
)

. Light colors = large density values.

Density plots

α = 1.8 α = 10

As heat maps

α = 0.8
Large density values

at extreme points

α = 1
Uniform distribution

on ∆K

α = 1.8
Density peaks

around its mean

α = 10
Peak sharpens

with increasing α

Advanced Machine Learning 77 / 188

MULTINOMIAL-DIRICHLET MODEL

• Suppose we observe data from a multinomial distribution on K categories. The
multinomial is parametrized by a finite probability distribution on K events. We generate
this distribution using a Dirichlet (with hyperparameters α and g1:K). What is the
posterior?

• If we observe hk counts in category k, the posterior is
Π(c1:K |h1, . . . , hk) = qDirichlet(c1:K |α+ n, (αg1 + h1, . . . , αgK + hK))

where n =
∑

k hk is the total number of observations.
• The posterior distribution of a Dirichlet prior combined with a multinomial observation

model is again a Dirichlet distribution.

Illustration: One observation
Suppose K = 3 and we obtain a single observation in category 3.

This extreme point
correponds to k = 3.

Prior: Mean at the center. Posterior: Shifted mean, increased concentration.

Advanced Machine Learning 78 / 188

BAYESIAN MIXTURE MODELS

Definition
A model of the form

π(x) =
K∑

k=1

Ckp(x|Θk)

is called a Bayesian mixture model if p(x|θ) is an exponential family model and
• Θ1, . . . ,ΘK ∼iid q, where q is a prior we have chosen for Θ.
• (C1, . . . ,CK) is sampled from a K-dimensional Dirichlet distribution.

Advanced Machine Learning 79 / 188

BAYESIAN MIXTURE: INFERENCE

Posterior distribution
The posterior of a BMM under observations x1, . . . , xn is (up to normalization):

Π(c1:K , θ1:K |x1:n) ∝
n∏

i=1

(K∑
k=1

ckp(xi|θk)
)(K∏

k=1

q(θk)
)

qDirichlet(c1:K)

The posterior is analytically intractable
• Thanks to conjugacy, we can evaluate each term of the posterior.

• However: Due to the
∏n

i=1

(∑K
k=1 . . .

)
bit, the posterior has Kn terms!

• Even for 10 clusters and 100 observations, that is impossible to compute.

Solution
The posterior can be sampled with a very simple MCMC sampler (which looks strikingly
similar to an EM algorithm, and will be discussed later).

Advanced Machine Learning 80 / 188

MARKOV RANDOM FIELDS

UNDIRECTED GRAPHICAL MODEL

• A graphical model is undirected when its dependency graph is undirected; equivalently, if
each edge in the graph is either absent, or present in both directions.

X Y

Z

X Y

Z

≡

X Y

Z

directed undirected

• An undirected graphical model is more commonly known as a Markov random field.
• Markov random fields are special cases of (directed) graphical models, but have distinct

properties. We treat them separately.
• We will consider the undirected case first.

Advanced Machine Learning 82 / 188

OVERVIEW

We start with an undirected graph:

ΘiΘi−1 Θi+1

Θk

Θj

Θk−1

Θj−1

Θk+1

Θj+1

wi+1,j+1

wi−1,i

...
...

...

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

A random variable Θi is associated with each vertex. Two random variables interact if they are
neighbors in the graph.

Advanced Machine Learning 83 / 188

NEIGHBORHOOD GRAPH

• We define a neighborhood graph, which is a weighted, undirected graph:

N = (VN ,WN)

vertex set
set of edge weights

The vertices vi ∈ VN are often referred to as sites.
• The edge weights are scalars wij ∈ R. Since the graph is undirected, the weights are

symmetric (wij = wji).
• An edge weight wij = 0 means "no edge between vi and vj".

Neighborhoods
The set of all neighbors of vj in the graph,

∂ (i) := { j |wij 6= 0}

is called the neighborhood of vi.

vi

purple = ∂ (i)

Advanced Machine Learning 84 / 188

MARKOV RANDOM FIELDS

Given a neighborhood graphN , associate with each site vi ∈ VN a RV Θi.

The Markov property
We say that the joint distribution P of (Θ1, . . . ,Θn) satisfies the Markov property with
respect toN if

L(Θi|Θj, j 6= i) = L(Θi|Θj, j ∈ ∂ (i)) .

The set {Θj, j ∈ ∂ (i)} of random variables indexed by neighbors of vi is called the Markov
blanket of Θi.

In words
The Markov property says that each Θi is conditionally independent of the remaining variables
given its Markov blanket.

Definition
A distribution L(Θ1, . . . ,Θn) which satisfies the
Markov property for a given graphN is called a Markov
random field.

Θi

Markov blanket of Θi

Advanced Machine Learning 85 / 188

ENERGY FUNCTIONS

Probabilities and energies
A (strictly positive) density p(x) can always be written in the form

p(x) =
1
Z

exp(−H(x)) where H : X→ R+

and Z is a normalization constant.

The function H is called an energy function, or cost function, or a potential.

MRF energy
In particular, we can write a MRF density for RVs Θ1:n as

p(θ1, . . . , θn) =
1
Z

exp(−H(θ1, . . . , θn))

Advanced Machine Learning 86 / 188

THE POTTS MODEL

Definition
SupposeN = (VN ,WN) a neighborhood graph with n vertices and β > 0 a constant. Then

p(θ1:n) :=
1

Z(β,WN)
exp
(
β
∑

i,j

wijI{θi = θj}
)

defines a joint distribution of n random variables Θ1, . . . ,Θn. This distribution is called the
Potts model.

Interpretation
• If wij > 0: The overall probability increases if Θi = Θj.
• If wij < 0: The overall probability decreases if Θi = Θj.
• If wij = 0: No interaction between Θi and Θj.

Positive weights encourage smoothness.

Advanced Machine Learning 87 / 188

EXAMPLE

Ising model
The simplest choice is wij = 1 if (i, j) is an edge.

p(θ1:n) =
1

Z(β)
exp
(∑

(i,j) is an edge

βI{θi = θj}
)

IfN is a d-dim. grid, this model is called the Ising model.

ΘiΘi−1 Θi+1

Θk

Θj

Θk−1

Θj−1

Θk+1

Θj+1

...
...

...

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

Example
Samples from an Ising model on a 56× 56 grid graph.

Increasing β −→

Advanced Machine Learning 88 / 188

MRFS AS SMOOTHNESS PRIORS

We consider a spatial problem with observations Xi. Each i is a location on a grid.

Spatial model
Suppose we model each Xi by a distribution L(X|Θi), i.e. each location i has its own parameter
variable Θi. This model is Bayesian (the parameter is a random variable). We use an MRF as
prior distribution.

p(. |θi)

Θi Θi+1

Θj Θj+1

Xi Xi+1

Xj Xj+1

unobserved

observed

We can think of L(X|Θi) as an emission probability, similar to an HMM.

Spatial smoothing
• We can define the joint distribution (Θ1, . . . ,Θn) as a MRF on the grid graph.
• For positive weights, the MRF will encourage the model to explain neighbors Xi and Xj by

the same parameter value.→ Spatial smoothing.

Advanced Machine Learning 89 / 188

EXAMPLE: SEGMENTATION OF NOISY IMAGES

Mixture model
• A BMM can be used for image segmentation.
• The BMM prior on the component parameters is a natural

conjugate prior q(θ).
• In the spatial setting, we index the parameter of each Xi

separately as θi. For K mixture components, θ1:n contains
only K different values.

• The joint BMM prior on θ1:n is

qBMM(θ1:n) =
n∏

i=1

q(θi) .

Smoothing term
We multiply the BMM prior qBMM(θ) with an MRF prior

qMRF(θ1:n) =
1

Z(β)
exp
(
β
∑

wij 6=0

I{θi = θj}
)

This encourages spatial smoothnes of the segmentation.

Int J Comput Vis

equipped with a prior probability. The prior is controlled by
means of the hyperparameter α. The number of classes de-
pends on α, but the influence of the hyperparameter can be
overruled by observed evidence. A question of particular in-
terest is therefore the influence of the hyperparameter α on
the number of clusters. Table 1 shows the average number of
clusters selected by the model for a wide range of hyperpa-
rameter values, ranging over several orders of magnitude.
Averages are taken over ten randomly initialized experi-

Fig. 6 A SAR image with a high noise level and ambiguous segments
(upper left). Solutions without (upper right) and with smoothing

Fig. 7 Segmentation results for α = 10, at different levels of smooth-
ing: Unconstrained (left), standard smoothing (λ = 1, middle) and
strong smoothing (λ = 5, right)

ments each. In general, the number of clusters increases
monotonically with an increasing value of the DP scatter pa-
rameter α. With smoothing activated, the average estimate
becomes more conservative, and more stable with respect
to a changing α. The behavior of the estimate depends on
the class structure of the data. If the data is well-separated,
estimation results become more stable, as is the case for
the MRI image (Fig. 8). With smoothing activated, the es-
timated number of clusters stabilizes at NC = 4. In contrast,
the data in Fig. 4 does not provide sufficient evidence for
a particular number of classes, and no stabilization effect
is observed. We thus conclude that, maybe not surprisingly,
the reliability of MDP and MDP/MRF model selection re-
sults depends on how well the parametric clustering model
used with the DP is able to separate the input features into
different classes. The effect of the base measure scatter, de-
fied here by the parameter β , is demonstrated in Fig. 9. The
number of clusters selected is plotted over α at two differ-
ent values of β = 50 and β = 200, each with and without
smoothing. The number of clusters is consistently decreased
by increasing β and activating the smoothing constraint.

The stabilizing effect of smoothing is particularly pro-
nounced for large values of α, resulting in a large number

Fig. 8 MR frontal view image of a monkey’s head. Original image
(upper left), unsmoothed MDP segmentation (upper right), smoothed
MDP segmentation (lower left), original image overlaid with segment
boundaries (smoothed result, lower right)

Table 1 Average number of
clusters (with standard
deviations), chosen by the
algorithm on two images for
different values of the
hyperparameter. When
smoothing is activated (λ = 5,
right column), the number of
clusters tends to be more stable
with respect to a changing α

α Image Fig. 4 Image Fig. 8

MDP Smoothed MDP Smoothed

1e-10 7.7 ± 1.1 4.8 ± 1.4 6.3 ± 0.2 2.0 ± 0.0

1e-8 12.9 ± 0.8 6.2 ± 0.4 6.5 ± 0.3 2.6 ± 0.9

1e-6 14.8 ± 1.7 8.0 ± 0.0 8.6 ± 0.9 4.0 ± 0.0

1e-4 20.6 ± 1.2 9.6 ± 0.7 12.5 ± 0.3 4.0 ± 0.0

1e-2 33.2 ± 4.6 11.8 ± 0.4 22.4 ± 1.8 4.0 ± 0.0

Input image.

Int J Comput Vis

equipped with a prior probability. The prior is controlled by
means of the hyperparameter α. The number of classes de-
pends on α, but the influence of the hyperparameter can be
overruled by observed evidence. A question of particular in-
terest is therefore the influence of the hyperparameter α on
the number of clusters. Table 1 shows the average number of
clusters selected by the model for a wide range of hyperpa-
rameter values, ranging over several orders of magnitude.
Averages are taken over ten randomly initialized experi-

Fig. 6 A SAR image with a high noise level and ambiguous segments
(upper left). Solutions without (upper right) and with smoothing

Fig. 7 Segmentation results for α = 10, at different levels of smooth-
ing: Unconstrained (left), standard smoothing (λ = 1, middle) and
strong smoothing (λ = 5, right)

ments each. In general, the number of clusters increases
monotonically with an increasing value of the DP scatter pa-
rameter α. With smoothing activated, the average estimate
becomes more conservative, and more stable with respect
to a changing α. The behavior of the estimate depends on
the class structure of the data. If the data is well-separated,
estimation results become more stable, as is the case for
the MRI image (Fig. 8). With smoothing activated, the es-
timated number of clusters stabilizes at NC = 4. In contrast,
the data in Fig. 4 does not provide sufficient evidence for
a particular number of classes, and no stabilization effect
is observed. We thus conclude that, maybe not surprisingly,
the reliability of MDP and MDP/MRF model selection re-
sults depends on how well the parametric clustering model
used with the DP is able to separate the input features into
different classes. The effect of the base measure scatter, de-
fied here by the parameter β , is demonstrated in Fig. 9. The
number of clusters selected is plotted over α at two differ-
ent values of β = 50 and β = 200, each with and without
smoothing. The number of clusters is consistently decreased
by increasing β and activating the smoothing constraint.

The stabilizing effect of smoothing is particularly pro-
nounced for large values of α, resulting in a large number

Fig. 8 MR frontal view image of a monkey’s head. Original image
(upper left), unsmoothed MDP segmentation (upper right), smoothed
MDP segmentation (lower left), original image overlaid with segment
boundaries (smoothed result, lower right)

Table 1 Average number of
clusters (with standard
deviations), chosen by the
algorithm on two images for
different values of the
hyperparameter. When
smoothing is activated (λ = 5,
right column), the number of
clusters tends to be more stable
with respect to a changing α

α Image Fig. 4 Image Fig. 8

MDP Smoothed MDP Smoothed

1e-10 7.7 ± 1.1 4.8 ± 1.4 6.3 ± 0.2 2.0 ± 0.0

1e-8 12.9 ± 0.8 6.2 ± 0.4 6.5 ± 0.3 2.6 ± 0.9

1e-6 14.8 ± 1.7 8.0 ± 0.0 8.6 ± 0.9 4.0 ± 0.0

1e-4 20.6 ± 1.2 9.6 ± 0.7 12.5 ± 0.3 4.0 ± 0.0

1e-2 33.2 ± 4.6 11.8 ± 0.4 22.4 ± 1.8 4.0 ± 0.0

Segmentation w/o smoothing.

Int J Comput Vis

equipped with a prior probability. The prior is controlled by
means of the hyperparameter α. The number of classes de-
pends on α, but the influence of the hyperparameter can be
overruled by observed evidence. A question of particular in-
terest is therefore the influence of the hyperparameter α on
the number of clusters. Table 1 shows the average number of
clusters selected by the model for a wide range of hyperpa-
rameter values, ranging over several orders of magnitude.
Averages are taken over ten randomly initialized experi-

Fig. 6 A SAR image with a high noise level and ambiguous segments
(upper left). Solutions without (upper right) and with smoothing

Fig. 7 Segmentation results for α = 10, at different levels of smooth-
ing: Unconstrained (left), standard smoothing (λ = 1, middle) and
strong smoothing (λ = 5, right)

ments each. In general, the number of clusters increases
monotonically with an increasing value of the DP scatter pa-
rameter α. With smoothing activated, the average estimate
becomes more conservative, and more stable with respect
to a changing α. The behavior of the estimate depends on
the class structure of the data. If the data is well-separated,
estimation results become more stable, as is the case for
the MRI image (Fig. 8). With smoothing activated, the es-
timated number of clusters stabilizes at NC = 4. In contrast,
the data in Fig. 4 does not provide sufficient evidence for
a particular number of classes, and no stabilization effect
is observed. We thus conclude that, maybe not surprisingly,
the reliability of MDP and MDP/MRF model selection re-
sults depends on how well the parametric clustering model
used with the DP is able to separate the input features into
different classes. The effect of the base measure scatter, de-
fied here by the parameter β , is demonstrated in Fig. 9. The
number of clusters selected is plotted over α at two differ-
ent values of β = 50 and β = 200, each with and without
smoothing. The number of clusters is consistently decreased
by increasing β and activating the smoothing constraint.

The stabilizing effect of smoothing is particularly pro-
nounced for large values of α, resulting in a large number

Fig. 8 MR frontal view image of a monkey’s head. Original image
(upper left), unsmoothed MDP segmentation (upper right), smoothed
MDP segmentation (lower left), original image overlaid with segment
boundaries (smoothed result, lower right)

Table 1 Average number of
clusters (with standard
deviations), chosen by the
algorithm on two images for
different values of the
hyperparameter. When
smoothing is activated (λ = 5,
right column), the number of
clusters tends to be more stable
with respect to a changing α

α Image Fig. 4 Image Fig. 8

MDP Smoothed MDP Smoothed

1e-10 7.7 ± 1.1 4.8 ± 1.4 6.3 ± 0.2 2.0 ± 0.0

1e-8 12.9 ± 0.8 6.2 ± 0.4 6.5 ± 0.3 2.6 ± 0.9

1e-6 14.8 ± 1.7 8.0 ± 0.0 8.6 ± 0.9 4.0 ± 0.0

1e-4 20.6 ± 1.2 9.6 ± 0.7 12.5 ± 0.3 4.0 ± 0.0

1e-2 33.2 ± 4.6 11.8 ± 0.4 22.4 ± 1.8 4.0 ± 0.0

Segmentation with MRF smoothing.

Advanced Machine Learning 90 / 188

SAMPLING AND INFERENCE

MRFs pose two main computational problems.

Problem 1: Sampling

Generate samples from the joint distribution of (Θ1, . . . ,Θn).

Problem 2: Inference
If the MRF is used as a prior, we have to compute or approximate the posterior distribution.

Solution
• MRF distributions on grids are not analytically tractable. The only known exception is the

Ising model in 1 dimension.
• Both sampling and inference are based on Markov chain sampling algorithms.

Advanced Machine Learning 91 / 188

SAMPLING ALGORITHMS

SAMPLING ALGORITHMS

In general
• A sampling algorithm is an algorithm that outputs samples X1,X2, . . . from a given

distribution P or density p.
• Sampling algorithms can for example be used to approximate expectations:

Ep[f (X)] ≈
1
n

n∑
i=1

f (Xi)

Inference in Bayesian models
Suppose we work with a Bayesian model whose posterior Q̂n := L(Θ|X1:n) cannot be
computed analytically.

• We will see that it can still be possible to sample from Q̂n.

• Doing so, we obtain samples Θ1,Θ2, . . . distributed according to Q̂n.
• This reduces posterior estimation to a density estimation problem

(i.e. estimate Q̂n from Θ1,Θ2, . . .).

Advanced Machine Learning 93 / 188

PREDICTIVE DISTRIBUTIONS

Posterior expectations
If we are only interested in some statistic of the posterior of the form EQ̂n

[f (Θ)] (e.g. the
posterior mean), we can again approximate by

EQ̂n
[f (Θ)] ≈

1
m

m∑
i=1

f (Θi) .

Example: Predictive distribution
The posterior predictive distribution is our best guess of what the next data point xn+1 looks
like, given the posterior under previous observations. In terms of densities:

p(xn+1|x1:n) :=

∫
T

p(xn+1|θ)Q̂n(dθ|X1:n = x1:n) .

This is one of the key quantities of interest in Bayesian statistics.

Computation from samples
The predictive is a posterior expectation, and can be approximated as a sample average:

p(xn+1|x1:n) = EQ̂n
[p(xn+1|Θ)] ≈

1
m

m∑
i=1

p(xn+1|Θi)

Advanced Machine Learning 94 / 188

BASIC SAMPLING: AREA UNDER CURVE

Say we are interested in a probability density p on the interval [a, b].

x

p(y)

a b

A

Yi

Xi

Key observation
Suppose we can define a uniform distribution UA on the blue area A under the curve. If we
sample

(X1, Y1), (X2, Y2), . . . ∼iid UA

and discard the vertical coordinates Yi, the Xi are distributed according to p,

X1,X2, . . . ∼iid p .

Problem: Defining a uniform distribution is easy on a rectangular area, but difficult on an
arbritrarily shaped one.

Advanced Machine Learning 95 / 188

REJECTION SAMPLING ON THE INTERVAL

Solution: Rejection sampling
We can enclose p in box, and sample uniformly from the box B.

x

p(x)

a b

c

B

• We can sample (Xi, Yi) uniformly on B by sampling

Xi ∼ Uniform[a, b] and Yi ∼ Uniform[0, c] .

• If (Xi, Yi) ∈ A, keep the sample.
That is: If Yi ≤ p(Xi).

• Otherwise: Discard it ("reject" it).

Result: The remaining (non-rejected) samples are uniformly distributed on A.

Advanced Machine Learning 96 / 188

SCALING

This strategy still works if we scale the vertically by some constant k > 0.

x
a b

c

B

x
a b

k · c

B

We simply draw Yi ∼ Uniform[0, kc] instead of Yi ∼ Uniform[0, c].

Consequence

For sampling, it is sufficient if p is known only up to normalization
(only the shape of p is known).

Advanced Machine Learning 97 / 188

DISTRIBUTIONS KNOWN UP TO SCALING

Sampling methods usually assume that we can evaluate the target distribution p up to a constant.
That is:

p(x) =
1
Z̃

p̃(x) ,

and we can compute p̃(x) for any given x, but we do not know Z̃.

We have to pause for a moment and convince ourselves that there are useful examples where
this assumption holds.

Example 1: Simple posterior
For an arbitrary posterior computed with Bayes’ theorem, we could write

Π(θ|x1:n) =

∏n
i=1 p(xi|θ)q(θ)

Z̃
with Z̃ =

∫
T

n∏
i=1

p(xi|θ)q(θ)dθ .

Provided that we can compute the numerator, we can sample without computing the
normalization integral Z̃.

Advanced Machine Learning 98 / 188

DISTRIBUTIONS KNOWN UP TO SCALING

Example 2: Bayesian Mixture Model
Recall that the posterior of the BMM is (up to normalization):

q̂n(c1:K , θ1:K |x1:n) ∝
n∏

i=1

(K∑
k=1

ckp(xi|θk)
)(K∏

k=1

q(θk)
)

qDirichlet(c1:K)

We already know that we can discard the normalization constant, but can we evaluate the
non-normalized posterior q̃n?
• The problem with computing q̃n (as a function of unknowns) is that the term∏n

i=1

(∑K
k=1 . . .

)
blows up into Kn individual terms.

• If we evaluate q̃n for specific values of c, x and θ,
∑K

k=1 ckp(xi|θk) collapses to a single
number for each xi, and we just have to multiply those n numbers.

So: Computing q̃n as a formula in terms of unknowns is difficult; evaluating it for specific
values of the arguments is easy.

Advanced Machine Learning 99 / 188

DISTRIBUTIONS KNOWN UP TO SCALING

Example 3: Markov random field
In a MRF, the normalization function is the real problem.

For example, recall the Ising model:

p(θ1:n) =
1

Z(β)
exp
(∑

(i,j) is an edge

βI{θi = θj}
)

The normalization function is

Z(β) =
∑

θ1:n∈{0,1}n

exp
(∑

(i,j) is an edge

βI{θi = θj}
)

and hence a sum over 2n terms. The general Potts model is even more difficult.

On the other hand, evaluating

p̃(θ1:n) = exp
(∑

(i,j) is an edge

βI{θi = θj}
)

for a given configuration θ1:n is straightforward.

Advanced Machine Learning 100 / 188

REJECTION SAMPLING ON Rd

If we are not on the interval, sampling uniformly from an enclosing box is not possible (since
there is no uniform distribution on all of R or Rd).

Solution: Proposal density
Instead of a box, we use another distribution r to enclose p:

x

p(x)

B

To generate B under r, we apply similar logic as before backwards:
• Sample Xi ∼ r.
• Sample Yi|Xi ∼ Uniform[0, r(Xi)].

r is always a simple distribution which we can sample and evaluate.

Advanced Machine Learning 101 / 188

REJECTION SAMPLING ON Rd

x

p(x)

B

• Choose a simple distribution r from which we know how to sample.
• Scale p̃ such that p̃(x) < r(x) everywhere.
• Sampling: For i = 1, 2, . . . ,:

1. Sample Xi ∼ r.
2. Sample Yi|Xi ∼ Uniform[0, r(Xi)].
3. If Yi < p̃(Xi), keep Xi.
4. Else, discard Xi and start again at (1).

• The surviving samples X1,X2, . . . are distributed according to p.

Advanced Machine Learning 102 / 188

FACTORIZATION PERSPECTIVE

The rejection step can be interpreted in terms of probabilities and densities.

Factorization
We factorize the target distribution or density p as

p(x) = r(x) · A(x)

distribution from which we
know how to sample

probability function we can evaluate
once a specific value of x is given

Sampling from the factorization

X =

{
X′ if Z = 1
(discard) if Z = 0

where X′ ∼ r and Z|X′ ∼ Bernoulli(A(X′))

Sampling Bernoulli variables with uniform variables

Z|X′ ∼ Bernoulli(A(X′)) ⇔ Z = I{U < A(X′)} where U ∼ Uniform[0, 1] .

Not examinable.Advanced Machine Learning 103 / 188

INDEPENDENCE

If we draw proposal samples Xi i.i.d. from r, the resulting sequence of accepted samples
produced by rejection sampling is again i.i.d. with distribution p. Hence:

Rejection samplers produce i.i.d. sequences of samples.

Important consequence
If samples X1,X2, . . . are drawn by a rejection sampler, the sample average

1
m

m∑
i=1

f (Xi)

(for some function f) is an unbiased estimate of the expectation Ep[f (X)].

Advanced Machine Learning 104 / 188

EFFICIENCY

The fraction of accepted samples is the ratio |A||B| of the areas under the curves p̃ and r.

x

p(x)

If r is not a reasonably close approximation of p, we will end up rejecting a lot of proposal
samples.

Advanced Machine Learning 105 / 188

AN IMPORTANT BIT OF IMPRECISE INTUITION

Example figures for sampling methods tend to look like this. A high-dimensional distribution of correlated RVs will look
rather more like this.

Sampling is usually used in multiple dimensions. Reason, roughly speaking:
• Intractable posterior distributions arise when there are several interacting random

variables. The interactions make the joint distribution complicated.
• In one-dimensional problems (1 RV), we can usually compute the posterior analytically.
• Independent multi-dimensional distributions factorize and reduce to one-dimensional case.

Warning: Avoid sampling if you can solve analytically.

Advanced Machine Learning 106 / 188

WHY IS NOT EVERY SAMPLER A REJECTION SAMPLER?

We can easily end up in situations where we accept only one in 106 (or 1010, or 1020,. . .)
proposal samples. Especially in higher dimensions, we have to expect this to be not the
exception but the rule.

Advanced Machine Learning 107 / 188

IMPORTANCE SAMPLING

The rejection problem can be fixed easily if we are only interested in approximating an
expectation Ep[f (X)].

Simple case: We can evaluate p
Suppose p is the target density and q a proposal density. An expectation under p can be
rewritten as

Ep[f (X)] =

∫
f (x)p(x)dx =

∫
f (x)

p(x)

q(x)
q(x)dx = Eq

[
f (X)p(X)

q(X)

]

Importance sampling
We can sample X1,X2, . . . from q and approximate Ep[f (X)] as

Ep[f (X)] ≈
1
m

m∑
i=1

f (Xi)
p(Xi)

q(Xi)

There is no rejection step; all samples are used.

This method is called importance sampling. The coefficients p(Xi)
q(Xi)

are called importance
weights.

Advanced Machine Learning 108 / 188

IMPORTANCE SAMPLING

General case: We can only evaluate p̃
In the general case,

p =
1
Zp

p̃ and q =
1
Zq

q̃ ,

and Zp (and possibly Zq) are unknown. We can write Zp
Zq

as

Zp

Zq
=

∫
p̃(x)dx
Zq

=

∫
p̃(x)

q(x)
q(x) dx

Zq
=

∫
p̃(x)

q(x)

Zq · q(x)
dx = Eq

[
p̃(X)

q̃(X)

]
Approximating the constants
The fraction Zp

Zq
can be approximated using samples x1:m from q:

Zp

Zq
= Eq

[
p̃(X)

q̃(X)

]
≈

1
m

m∑
i=1

p̃(Xi)

q̃(Xi)

Approximating Ep[f (X)]

Ep[f (X)] ≈
1
m

m∑
i=1

f (Xi)
p(Xi)

q(Xi)
=

1
m

m∑
i=1

f (Xi)
Zq

Zp

p̃(Xi)

q̃(Xi)
=

m∑
i=1

f (Xi)
p̃(Xi)
q̃(Xi)∑m

j=1
p̃(Xj)

q̃(Xj)

Advanced Machine Learning 109 / 188

IMPORTANCE SAMPLING IN GENERAL

Conditions
• Given are a target distribution p and a proposal distribution q.

• p = 1
Zp

p̃ and q = 1
Zq

q̃.

• We can evaluate p̃ and q̃, and we can sample q.
• The objective is to compute Ep[f (X)] for a given function f .

Algorithm
1. Sample X1, . . . ,Xm from q.

2. Approximate Ep[f (X)] as

Ep[f (X)] ≈

∑m
i=1 f (Xi)

p̃(Xi)
q̃(Xi)∑m

j=1
p̃(Xj)

q̃(Xj)

Advanced Machine Learning 110 / 188

MARKOV CHAIN MONTE CARLO

MOTIVATION

Suppose we rejection-sample a distribution like this:

region of interest

Once we have drawn a sample in the narrow region of interest, we would like to continue
drawing samples within the same region. That is only possible if each sample depends on the
location of the previous sample.

Proposals in rejection sampling are i.i.d. Hence, once we have found the region where p
concentrates, we forget about it for the next sample.

Advanced Machine Learning 112 / 188

MCMC: IDEA

Recall: Markov chain
• A sufficiently nice Markov chain (MC) has an invariant distribution Pinv.
• Once the MC has converged to Pinv, each sample Xi from the chain has marginal

distribution Pinv.

Markov chain Monte Carlo
We want to sample from a distribution with density p. Suppose we can define a MC with
invariant distribution Pinv ≡ p. If we sample X1,X2, . . . from the chain, then once it has
converged, we obtain samples

Xi ∼ p .

This sampling technique is called Markov chain Monte Carlo (MCMC).

Note: For a Markov chain, Xi+1 can depend on Xi, so at least in principle, it is possible for an
MCMC sampler to "remember" the previous step and remain in a high-probability location.

Advanced Machine Learning 113 / 188

CONTINUOUS MARKOV CHAIN

The Markov chains we discussed so far had a finite state space X. For MCMC, state space now
has to be the domain of p, so we often need to work with continuous state spaces.

Continuous Markov chain
A continuous Markov chain is defined by an initial distribution Pinit and conditional probability
t(y|x), the transition probability or transition kernel.

In the discrete case, t(y = i|x = j) is the entry pij of the transition matrix p.

Example: A Markov chain on R2

We can define a very simple Markov chain by sampling

Xi+1|Xi = xi ∼ g(. |xi, σ
2)

where g(x|µ, σ2) is a spherical Gaussian with fixed variance. In
other words, the transition distribution is

t(xi+1|xi) := g(xi+1|xi, σ
2) .

xi

A Gaussian (gray contours) is placed
around the current point xi to sample

Xi+1 .

Advanced Machine Learning 114 / 188

INVARIANT DISTRIBUTION

Recall: Finite case
• The invariant distribution Pinv is a distribution on the finite state space X of the MC

(i.e. a vector of length |X|).
• "Invariant" means that, if Xi is distributed according to Pinv, and we execute a step

Xi+1 ∼ t(. |xi) of the chain, then Xi+1 again has distribution Pinv.
• In terms of the transition matrix p:

p · Pinv = Pinv

Continuous case
• X is now uncountable (e.g. X = Rd).
• The transition matrix p is substituted by the conditional probability t.
• A distribution Pinv with density pinv is invariant if∫

X
t(y|x)pinv(x)dx = pinv(y)

This is simply the continuous analogue of the equation
∑

i pij(Pinv)i = (Pinv)j.

Advanced Machine Learning 115 / 188

MARKOV CHAIN SAMPLING

We run the Markov chain n for steps.
Each step moves from the current

location xi to a new xi+1 .

We "forget" the order and regard the
locations x1:n as a random set of

points.

If p (red contours) is both the
invariant and initial distribution, each

Xi is distributed as Xi ∼ p.

Problems we need to solve
1. We have to construct a MC with invariant distribution p.

2. We cannot actually start sampling with X1 ∼ p; if we knew how to sample from p, all of
this would be pointless.

3. Each point Xi is marginally distributed as Xi ∼ p, but the points are not i.i.d.

Advanced Machine Learning 116 / 188

CONSTRUCTING THE MARKOV CHAIN

Given is a continuous target distribution with density p.

Metropolis-Hastings (MH) kernel
1. We start by defining a conditional probability q(y|x) on X.

q has nothing to do with p. We could e.g. choose q(y|x) = g(y|x, σ2), as in the previous example.

2. We define a rejection kernel A as

A(xi+1|xi) := min
{

1,
q(xi|xi+1)p(xi+1)

q(xi+1|xi)p(xi)

}
The normalization of p cancels in the quotient, so knowing p̃ is again enough.

3. We define the transition probability of the chain as

t(xi+1|xi) := q(xi+1|xi)A(xi+1|xi)+δxi (xi+1)c(xi) where c(xi) :=

∫
q(y|xi)(1−A(y|xi))dy

Sampling from the MH chain
At each step i + 1, generate a proposal X∗ ∼ q(. |xi) and Ui ∼ Uniform[0, 1].
• If Ui ≤ A(x∗|xi), accept proposal: Set xi+1 := x∗.
• If Ui > A(x∗|xi), reject proposal: Set xi+1 := xi.

total probability that
a proposal is sampled

and then rejected

Advanced Machine Learning 117 / 188

STOCHASTIC HILL-CLIMBING

The Metropolis-Hastings rejection kernel was defined as:

A(xi+1|xi) = min
{

1,
q(xi|xi+1)p(xi+1)

q(xi+1|xi)p(xi)

}
.

Hence, we certainly accept if the second term is larger than 1, i.e. if

q(xi|xi+1)p(xi+1) > q(xi+1|xi)p(xi) .

That means:
• We always accept the proposal value xi+1 if it increases the probability under p.
• If it decreases the probability, we still accept with a probability which depends on the

difference to the current probability.

Hill-climbing interpretation
• The MH sampler somewhat resembles a gradient ascent algorithm on p, which tends to

move in the direction of increasing probability p.
• However:

• The actual steps are chosen at random.
• The sampler can move "downhill" with a certain probability.
• When it reaches a local maximum, it does not get stuck there.

Advanced Machine Learning 118 / 188

PROBLEM 1: INITIAL DISTRIBUTION

Recall: Fundamental theorem on Markov chains
Suppose we sample X1 ∼ Pinit and Xi+1 ∼ t(. |xi). This defines a distribution Pi of Xi, which
can change from step to step. If the MC is nice (recall: irreducible and aperiodic), then

Pi → Pinv for i→∞ .

Note: Making precise what aperiodic means in a continuous state space is a bit more technical than in the finite case, but the
theorem still holds. We will not worry about the details here.

Implication
• If we can show that Pinv ≡ p, we do not have to know how to sample from p.
• Instead, we can start with any Pinit, and will get arbitrarily close to p for sufficiently large i.

Advanced Machine Learning 119 / 188

BURN-IN AND MIXING TIME

The number m of steps required until Pm ≈ Pinv ≡ p is called the mixing time of the Markov
chain. (In probability theory, there is a range of definitions for what exactly Pm ≈ Pinv means.)

In MC samplers, the first m samples are also called the burn-in phase. The first m samples of
each run of the sampler are discarded:

X1, . . . ,Xm−1,Xm,Xm+1, . . .

Burn-in;
discard.

Samples from
(approximately) p;

keep.

Convergence diagnostics
In practice, we do not know how large m is. There are a number of methods for assessing
whether the sampler has mixed. Such heuristics are often referred to as convergence
diagnostics.

Advanced Machine Learning 120 / 188

PROBLEM 2: SEQUENTIAL DEPENDENCE

Even after burn-in, the samples from a MC are not i.i.d.

Strategy
• Estimate empirically how many steps L are needed for xi and xi+L to be approximately

independent. The number L is called the lag.
• After burn-in, keep only every Lth sample; discard samples in between.

Estimating the lag
The most commen method uses the autocorrelation function:

Auto(Xi,Xj) :=
E[(Xi − µi)(Xj − µj)]

σiσj
,

where µi is the mean and σi the standard deviation of Xi. We
compute Auto(Xi,Xi+L) empirically from the sample for different
values of L, and find the smallest L for which the autocorrelation is
close to zero.

Autocorrelation Plots

We can get autocorrelation plots using the autocorr.plot()
function.

> autocorr.plot(mh.draws)

0 5 15 25

−1
.0

−0
.5

0.
0

0.
5

1.
0

Lag

Au
to
co
rre
la
tio
n

0 5 15 25

−1
.0

−0
.5

0.
0

0.
5

1.
0

Lag

Au
to
co
rre
la
tio
n

L

A
ut

o(
X

i,
X

i+
L
)

Advanced Machine Learning 121 / 188

CONVERGENCE DIAGNOSTICS

There are about half a dozen popular convergence crieteria; the one below is an example.

Gelman-Rubin criterion
• Start several chains at random. For each chain k, sample Xk

i
has a marginal distribution Pk

i .

• The distributions of Pk
i will differ between chains in early

stages.
• Once the chains have converged, all Pi = Pinv are identical.
• Criterion: Use a hypothesis test to compare Pk

i for different k
(e.g. compare P2

i against null hypothesis P1
i). Once the test

does not reject anymore, assume that the chains are past
burn-in.

Reference: A. Gelman and D. B. Rubin: "Inference from Iterative Simulation Using Multiple Sequences", Statistical Science, Vol. 7 (1992) 457-511.

Advanced Machine Learning 122 / 188

SELECTING A PROPOSAL DISTRIBUTION

Everyone’s favorite example: Two Gaussians

red = target distribution p
gray = proposal distribution q

• Var[q] too large:
Will overstep p; many rejections.

• Var[q] too small:
Many steps needed to achieve good
coverage of domain.

If p is unimodal and can be roughly
approximated by a Gaussian, Var[q] should be
chosen as smallest covariance component of p.

More generally
For complicated posteriors (recall: small regions of concentration, large low-probability regions
in between) choosing q is much more difficult. To choose q with good performance, we already
need to know something about the posterior.

There are many strategies, e.g. mixture proposals (with one component for large steps and one
for small steps).

Advanced Machine Learning 123 / 188

SUMMARY: MH SAMPLER

• MCMC samplers construct a MC with invariant distribution p.
• The MH kernel is one generic way to construct such a chain from p and a proposal

distribution q.
• Formally, q does not depend on p (but arbitrary choice of q usually means bad

performance).
• We have to discard an initial number m of samples as burn-in to obtain samples

(approximately) distributed according to p.
• After burn-in, we keep only every Lth sample (where L = lag) to make sure the xi are

(approximately) independent.

X1, . . . ,Xm−1,Xm,Xm+1, . . . ,Xm+L−1,Xm+L,Xm+L+1, . . .Xm+2L−1,Xm+2L, . . .

Burn-in;
discard.

Samples correlated
with Xj; discard.

Samples correlated
with Xj+L ; discard.

Keep. Keep. Keep.

Advanced Machine Learning 124 / 188

THE GIBBS SAMPLER

GIBBS SAMPLING

By far the most widely used MCMC algorithm is the Gibbs sampler.

Full conditionals
Suppose L(X) is a distribution on RD, so X = (X1, . . . ,XD). The conditional probability of the
entry Xd given all other entries,

L(Xd|X1, . . . ,Xd−1,Xd+1, . . . ,XD)

is called the full conditional distribution of Xd .

On RD, that means we are interested in a density

p(xd|x1, . . . , xd−1, xd+1, . . . , xD)

Gibbs sampling
The Gibbs sampler is the special case of the Metropolis-Hastings algorithm defined by

propsoal distribution for Xd = full conditional of Xd .

• Gibbs sampling is only applicable if we can compute the full conditionals for each
dimension d.

• If so, it provides us with a generic way to derive a proposal distribution.

Advanced Machine Learning 126 / 188

THE GIBBS SAMPLER

Proposal distribution
Suppose p is a distribution on RD, so each sample is of the form Xi = (Xi,1, . . . ,Xi,D). We
generate a proposal Xi+1 coordinate-by-coordinate as follows:

Xi+1,1 ∼ p(. |xi,2, . . . , xi,D)

...
Xi+1,d ∼ p(. |xi+1,1, . . . , xi+1,d−1, xi,d+1, . . . , xi,D)

...
Xi+1,D ∼ p(. |xi+1,1, . . . , xi+1,D−1)

Note: Each new Xi+1,d is immediately used in the update of the next dimension d + 1.

A Metropolis-Hastings algorithms with proposals generated as above is called a Gibbs sampler.

No rejections
One can show that the Metropolis-Hastings acceptance probability for each xi+1,d+1 is 1, so
proposals in Gibbs sampling are always accepted.

Advanced Machine Learning 127 / 188

EXAMPLE: MRF

In a MRF with D nodes, each dimension d corresponds to one vertex.

Full conditionals
In a grid with 4-neighborhoods for instance, the Markov
property implies that

p(θd|θ1, . . . , θd−1, θd+1, . . . , θD) = p(θd|θleft, θright, θup, θdown)

ΘdΘleft Θright

Θdown

Θup

Specifically: Potts model with binary weights
Recall that, for sampling, knowing only p̃ (unnormalized) is sufficient:

p̃(θd|θ1, . . . , θd−1, θd+1, . . . , θD) =

exp
(
β(I{θd = θleft}+ I{θd = θright}+ I{θd = θup}+ I{θd = θdown}

)
This is clearly very efficiently computable.

Advanced Machine Learning 128 / 188

EXAMPLE: MRF

Sampling the Potts model
Each step of the sampler generates a sample

θi = (θi,1, . . . , θi,D) ,

where D is the number of vertices in the grid.

Gibbs sampler
Each step of the Gibbs sampler generates n updates according to

θi+1,d ∼ p(. |θi+1,1, . . . , θi+1,d−1, θi,d+1, . . . , θi,D)

∝ exp
(
β(I{θi+1,d = θleft}+ I{θi+1,d = θright}+ I{θi+1,d = θup}+ I{θi+1,d = θdown})

)

Advanced Machine Learning 129 / 188

BURN-IN MATTERS

This example is due to Erik Sudderth (UC Irvine).

MRFs as "segmentation" priors

!"#$%&'&!"#$%(&)*+,&

-..&/0"1$023%4&

)-+&5)-+&6127&
+&%"$1"40&%"268931&"76"4&
:&;&<&40$0"4&
=3004&>30"%02$?4@&

).(...&/0"1$023%4&
• MRFs where introduced as tools for image smoothing and segmentation by D. and S.

Geman in 1984.
• They sampled from a Potts model with a Gibbs sampler, discarding 200 iterations as

burn-in.
• Such a sample (after 200 steps) is shown above, for a Potts model in which each variable

can take one out of 5 possible values.
• These patterns led computer vision researchers to conclude that MRFs are "natural" priors

for image segmentation, since samples from the MRF resemble a segmented image.

Advanced Machine Learning 130 / 188

EXAMPLE: BURN-IN MATTERS

E. Sudderth ran a Gibbs sampler on the same model and sampled after 200 iterations (as the Geman brothers did),
and again after 10000 iterations:

!"#$%&'&!"#$%(&)*+,&

-..&/0"1$023%4&

)-+&5)-+&6127&
+&%"$1"40&%"268931&"76"4&
:&;&<&40$0"4&
=3004&>30"%02$?4@&

).(...&/0"1$023%4&

200 iterations

!"#$%&'&!"#$%(&)*+,&

-..&/0"1$023%4&

)-+&5)-+&6127&
+&%"$1"40&%"268931&"76"4&
:&;&<&40$0"4&
=3004&>30"%02$?4@&

).(...&/0"1$023%4&

10000 iterations

Chain 1 Chain 5

• The "segmentation" patterns are not sampled from the MRF distribution p ≡ Pinv, but
rather from P200 6= Pinv.

• The patterns occur not because MRFs are "natural" priors for segmentations, but because
the sampler’s Markov chain has not mixed.

• MRFs are smoothness priors, not segmentation priors.

Advanced Machine Learning 131 / 188

TOOLS: LOGISTIC REGRESSION

SIGMOIDS

Sigmoid function

σ(x) =
1

1 + e−x

-10 -5 5 10

0.2

0.4

0.6

0.8

1.0

Note

1−σ(x) =
1 + e−x − 1

1 + e−x
=

1
ex + 1

= σ(−x)

Derivative

dσ
dx

(x) =
e−x

(1 + e−x)2
= σ(x)

(
1− σ(x)

) -10 -5 5 10

0.2

0.4

0.6

0.8

1.0

Sigmoid (blue) and its derivative (red)

Advanced Machine Learning 133 / 188

APPROXIMATING DECISION BOUNDARIES

• In linear classification: Decision
boundary is a discontinuity

• Boundary is represented either by
indicator function I{• > c} or sign
function sign(• − c)

• These representations are equivalent:
Note sign(• − c) = 2 · I{• > c} − 1

-5 0 5 10

0.2

0.4

0.6

0.8

1.0

The most important use of the sigmoid function in machine learning is as a smooth
approximation to the indicator function.

Given a sigmoid σ and a data point x, we decide which side of the approximated boundary we
are own by thresholding

σ(x) ≥
1
2

Advanced Machine Learning 134 / 188

SCALING

We can add a scale parameter by definining

σθ(x) := σ(θx) =
1

1− e−θx
for θ ∈ R

-5 0 5 10

0.2

0.4

0.6

0.8

1.0

Influence of θ
• As θ increases, σθ approximates I more closely.
• For θ →∞, the sigmoid converges to I pointwise, that is: For every x 6= 0, we have

σθ(x)→ I{x > 0} as θ → +∞ .

• Note σθ(0) = 1
2 always, regardless of θ.

Advanced Machine Learning 135 / 188

APPROXIMATING A LINEAR CLASSIFIER

So far, we have considered R, but linear classifiers usually live in Rd .

The decision boundary of a linear classifier in
R2 is a discontinuous ridge:

• This is a linear classifier of the form

I{〈v, x〉 − c}.
• Here: v = (1, 1) and c = 0.

We can “stretch” σ into a ridge function on R2:

• This is the function
x = (x1, x2) 7→ σ(x1).

• The ridge runs parallel to the x2-axes.
• If we use σ(x2) instead, we rotate by 90

degrees (still axis-parallel).

Advanced Machine Learning 136 / 188

STEERING A SIGMOID

Just as for a linear classifier, we use a normal vector v ∈ Rd .

• The function σ(〈v, x〉 − c) is a sigmoid ridge, where the ridge is orthogonal to the normal
vector v, and c is an offset that shifts the ridge “out of the origin”.

• The plot on the right shows the normal vector (here: v = (1, 1)) in black.
• The parameters v and c have the same meaning for I and σ, that is, σ(〈v, x〉 − c)

approximates I{〈v, x〉 ≥ c}.

Advanced Machine Learning 137 / 188

LOGISTIC REGRESSION

Logistic regression is a classification method that approximates decision boundaries by
sigmoids.

Setup
• Two-class classification problem
• Observations x1, . . . , xn ∈ Rd , class labels yi ∈ {0, 1}.

The logistic regression model
We model the conditional distribution of the class label given the data as

P(y|x) := Bernoulli
(
σ(〈v, x〉 − c)

)
.

• Recall σ(〈v, x〉 − c) takes values in [0, 1] for all θ, and value 1
2 on the class boundary.

• The logistic regression model interprets this value as the probability of being in class y.

Advanced Machine Learning 138 / 188

LEARNING LOGISTIC REGRESSION

Since the model is defined by a parametric distribution, we can apply maximum likelihood.

Notation
Recall from Statistical Machine Learning: We collect the parameters in a vector w by writing

w :=

(
v
−c

)
and x̃ :=

(
x
1

)
so that 〈w, x̃〉 = 〈v, x〉 − c .

Likelihood function of the logistic regression model
n∏

i=1

σ(〈w, x̃i〉)yi
(
1− σ(〈w, x̃i〉)

)1−yi

Negative log-likelihood

L(w) := −
n∑

i=1

(
yi log σ(〈w, x̃i〉) + (1− yi) log

(
1− σ(〈w, x̃i〉)

))

Advanced Machine Learning 139 / 188

MAXIMUM LIKELIHOOD

∇L(w) =
n∑

i=1

(
σ(wt x̃i)− yi

)
x̃i

Note
• Each training data point xi contributes to the sum proportionally to the approximation

error σ(wt x̃i)− yi incurred at xi by approximating the linear classifier by a sigmoid.

Maximum likelihood
• The ML estimator ŵ for w is the solution of

∇L(w) = 0 .

• For logistic regression, this equation has no solution in closed form.
• To find ŵ, we use numerical optimization.
• The function L is convex (= ∪-shaped).

Advanced Machine Learning 140 / 188

RECALL FROM STATISTICAL MACHINE LEARNING

• If f is differentiable, we can apply gradient descent:

x(k+1) := x(k) −∇f (x(k))

where x(k) is the candidate solution in step k of the algorithm.
• If the Hessian matrix Hf of partial second derivatives exists and is invertible, we can apply

Newton’s method, which converges faster:

x(k+1) := x(k) − H−1
f (x(k)) · ∇f (x(k))

• Recall that the Hessian matrix of a (twice continuously differentiable) function
f : Rd → R is

Hf (x) :=
(∂2f
∂xi∂xj

)
i,j≤n

Since f is twice differentiable, each ∂2f/∂xi∂xj exists; since it is twice continuously
differentiable, ∂2f/∂xi∂xj = ∂2f/∂xj∂xi, so Hf is symmetric.

• The inverse of Hf (x) exists if and only if the matrix is positive definite (semidefinite does
not suffice), which in turn is true if and only if f is strictly convex.

Advanced Machine Learning 141 / 188

NEWTON’S METHOD FOR LOGISTIC REGRESSION

Applying Newton

w(k+1) := w(k) − H−1
L (w(k)) · ∇L(w(k))

Matrix notation

X̃ :=

1 (x̃1)1 . . . (x̃1)j . . . (x̃1)d

...
...

...
1 (x̃i)1 . . . (x̃i)j . . . (x̃i)d

...
...

...
1 (x̃n)1 . . . (x̃n)j . . . (x̃n)d




x̃i Dσ =

σ(wt x̃1)(1− σ(wt x̃1)) . . . 0
...

. . .
...

0 . . . σ(wt x̃n)(1− σ(wt x̃n))



X̃ is the data matrix (or design matrix) you know from linear regression. X̃ has size n× (d + 1)
and Dσ is n× n.

Newton step

w(k+1) =
(
X̃tDσX̃

)−1X̃tDσ
(

X̃w(k) − Dσ
(

σ(
〈

w(k), x̃1
〉
)

...
σ(
〈

w(k), x̃n
〉
)

−
y1

...
yn

))

Advanced Machine Learning 142 / 188

NEWTON’S METHOD FOR LOGISTIC REGRESSION

w(k+1) =
(
X̃tDσX̃

)−1X̃tDσ
(

X̃w(k) − Dσ
(

σ(
〈

w(k), x̃1
〉
)

...
σ(
〈

w(k), x̃n
〉
)

−
y1

...
yn

))

=: u(k)

=
(
X̃tDσX̃

)−1X̃tDσu(k)

Compare this to the least squares solution of a linear regression problem:

β̂ββ = (X̃tX̃)−1X̃ty w(k+1) =
(
X̃tDσX̃

)−1X̃tDσu(k)

Differences:
• The vector y of regression responses is substituted by the vector u(k) above.

• The matrix X̃tX̃ is substituted by the matrix X̃tDσX̃.

• Note that matrices of product form X̃tX̃ are positive semidefinite; since Dσ is diagonal
with non-negative entries, so is X̃tDσX̃.

Iteratively Reweighted Least Squares
• At each step, the algorithm solves a least-squares problem “reweighted” by the matrix Dσ .
• Since this happens at each step of an iterative algorithm, Newton’s method applied to the

logistic regression log-likelihood is also known as Iteratively Reweighted Least Squares.

Advanced Machine Learning 143 / 188

OTHER OPTIMIZATION METHODS

Newton: Cost
• The size of the Hessian is (d + 1)× (d + 1).
• In high-dimensional problems, inverting HL can become problematic.

Other methods
Maximum likelihood only requires that we minimize the negative log-likelihood; we can choose
any numerical method, not just Newton. Alternatives include:
• Pseudo-Newton methods (only invert HL once, for w(1), but do not guarantee quadratic

convergence).
• Gradient methods.
• Approximate gradient methods, like stochastic gradient.

Advanced Machine Learning 144 / 188

OVERFITTING

Recall from Statistical Machine Learning

H

v

x

• If we increase the length of v without
changing its direction, the sign of 〈v, x〉
does not change, but the value changes.

• That means: If v is the normal vector of a
classifier, and we scale v by some θ > 0,
the decision boundary does not move, but
〈θv, x〉 = θ 〈v, x〉.

Effect inside a sigmoid

σ(〈θv, x〉) = σ(θ 〈v, x〉) = σθ(〈v, x〉)

As the length of v increases, σ(〈v, x〉) becomes
more similar to I{〈v, x〉 > 0}. -5 0 5 10

0.2

0.4

0.6

0.8

1.0

longer v

longer v

Advanced Machine Learning 145 / 188

EFFECT ON ML FOR LOGISTIC REGRESSION

-5 0 5 10

0.2

0.4

0.6

0.8

1.0

xi

σ(wt x̃i)− yi

• Recall each training data point xi contributes an error term σ(wt x̃i)− yi to the
log-likelihood.

• By increasing the lenghts of w, we can make σ(wt x̃i)− yi arbitrarily small without
moving the decision boundary.

Advanced Machine Learning 146 / 188

OVERFITTING

Consequence for linearly separable data
• Once the decision boundary is correctly located between the two classes, the maximization

algorithm can increase the log-likelihood arbitrarily by increasing the length of w.
• That does not move the decision boundary, but he logistic function looks more and more

like the indicator I.
• That may fit the training data more tightly, but can lead to bad generalization (e.g. for

similar reasons as for the perceptron, where the decision boundary may end up very close
to a training data point).

That is a form of overfitting.

Data that is not linearly separable
• If the data is not separable, sufficiently many points on the “wrong” side of the decision

boundary prevent overfitting (since making w larger increases error contributions of these
points).

• For large data sets, overfitting can still occur if the fraction of such points is small.

Solutions
• Overfitting can be addressed by including an additive penalty of the form L(w) + λ‖w‖.

Advanced Machine Learning 147 / 188

LOGISTIC REGRESSION FOR MULTIPLE CLASSES

Bernoulli and multinomial distributions
• The mulitnomial distribution of N draws from K categories with parameter vector

(θ1, . . . , θK) (where
∑

k≤K θk = 1) has probabililty mass function

P(m1, . . . ,mK |θ1, . . . , θK) =
N!

m1! · · ·mK !

K∏
k=1

θ
mk
k where mk = # draws in category k

• Note that Bernoulli(p) = Multinomial(p, 1− p; N = 1).

Logistic regression
• Recall two-class logistic regression is defined by P(Y|x) = Bernoulli(σ(wtx)).
• Idea: To generalize logistic regression to K classes, choose a separate weight vector wk

for each class k, and define P(Y|x) by

Multinomial
(
σ̃(wt

1x), . . . , σ̃(wt
Kx)
)

where σ̃(wt
1x) =

σ(wt
1x)∑

k σ(wt
kx) .

Advanced Machine Learning 148 / 188

LOGISTIC REGRESSION FOR MULTIPLE CLASSES

Logistic regression for K classes
The label y now takes values in {1, . . . ,K}.

P(y|x) =
K∏

k=1

σ̃(wt
k x̃)I{y=k}

The negative log-likelihood becomes

L(w1, . . . ,wK) = −
∑

i≤n, k≤K

I{y = k} log σ̃(wt
k x̃i)

This can again be optimized numerically.

Comparison to two-class case
• Recall that 1− σ(x) = σ(−x).
• That means

Bernoulli
(
σ(〈v, x〉 − c)

)
≡ Multinomial

(
σ(wtx), σ((−1)wtx)

)
• That is: Two-class logistic regression as above is equivalent to multiclass logistic

regression with K = 2 provided we choose w2 = −w1.

Advanced Machine Learning 149 / 188

NEURAL NETWORKS

THE MOST IMPORTANT BIT

A neural network represents a function f : Rd1 → Rd2 .

Advanced Machine Learning 151 / 188

BUILDING BLOCKS

Units
The basic building block is a node or unit:

φ

• The unit has incoming and outgoing arrows. We think of
each arrow as “transmitting” a signal.

• The signal is always a scalar.
• A unit represents a function φ.

We read the diagram as: A scalar value (say x) is transmitted to the unit, the function φ is
applied, and the result φ(x) is transmitted from the unit along the outgoing arrow.

Weights

w

f (x)

x

φ

• If we want to “input” a scalar x, we represent it as a unit, too.
• We can think of this as the unit representing the constant

function g(x) = x.
• Additionally, each arrow is usually inscribed with a (scalar)

weight w.
• As the signal x passes along the edge, it is multiplied by the

edge weight w.

The diagram above represents the function f (x) := φ(wx).

Advanced Machine Learning 152 / 188

READING NEURAL NETWORKS

f : R3 → R3 with input x =

x1
x2
x2



w11
w12

w13 w21

w22

w23
w31

w32
w33

f1(x)=φ1(〈w1, x〉) f2(x)=φ2(〈w2, x〉) f3(x)=φ3(〈w3, x〉)

x1 x2 x3

φ1 φ2 φ3

f (x) =

 f1(x)
f2(x)
f3(x)

 with fi(x) = φi

(3∑
j=1

wjixj

)

Advanced Machine Learning 153 / 188

FEED-FORWARD NETWORKS

A feed-forward network is a neural network whose units can be arranged into groups
L1, . . . ,LK so that connections (arrows) only pass from units in group Lk to units in group
Lk+1. The groups are called layers. In a feed-forward network:
• There are no connections within a layer.
• There are no backwards connections.
• There are no connections that skip layers, e.g. from Lk to units in group Lk+2.

feed-forward

L1

L2

L3

not feed-forward not feed-forward

Advanced Machine Learning 154 / 188

LAYERS

w1
11

w1
12 w1

21

w1
22

w2
11 w2

21

x1 x2

φ1
1 φ1

2

φ2
1

f (x)

• This network computes the function

f (x1, x2) = φ2
1

(
w2

11φ
1
1
(
w1

11x1+w1
21x2

)
+w2

12φ
1
2
(
w1

21x1+w1
22x2

))
• Clearly, writing out f gets complicated fairly quickly as the

network grows.

First shorthand: Scalar products
• Collect all weights coming into a unit into a vector, e.g.

w2
1 := (w2

11,w
2
21)

• Same for inputs: x = (x1, x2)

• The function then becomes

f (x) = φ2
1

(〈
w2

1,

(
φ1

1(
〈

w1
1, x
〉
)

φ1
2(
〈

w1
2, x
〉
)

)〉)

Advanced Machine Learning 155 / 188

LAYERS

w1
11

w1
12 w1

21

w1
22

φ1
1 φ1

2 f (2)

• Each layer represents a function, which takes the
output values of the previous layers as its
arguments.

• Suppose the output values of the two nodes at the
top are y1, y2.

• Then the second layer defines the
(two-dimensional) function

f (2)(y) =

(
φ1

1(
〈

w1
1, y
〉
)

φ1
2(
〈

w1
2, y
〉
)

)

Advanced Machine Learning 156 / 188

COMPOSITION OF FUNCTIONS

Basic composition
Suppose f and g are two function R→ R. Their composition g ◦ f is the function

g ◦ f (x) := g(f (x)) .

For example:
f (x) = x + 1 g(y) = y2 g ◦ f (x) = (x + 1)2

We could combine the same functions the other way around:

f ◦ g(x) = x2 + 1

In multiple dimensions
Suppose f : Rd1 → Rd2 and g : Rd2 → Rd3 . Then

g ◦ f (x) = g(f (x)) is a function Rd1 → Rd3 .

For example:

f (x) = 〈x, v〉 − c g(y) = sgn(y) g ◦ f (x) = sgn(〈x, v〉 − c)

Advanced Machine Learning 157 / 188

LAYERS AND COMPOSITION

w1
11

w1
12 w1

21

w1
22

w2
11 w2

21

x1 x2

φ1
1 φ1

2

φ2
1

f (x)

f (2)

f (3)

• As above, we write

f (2)(•) =

(
φ1

1(
〈

w1
1, •

〉
)

φ1
2(
〈

w1
2, •

〉
)

)
• The function for the third layer is similarly

f (3)(•) = φ2
1(
〈

w2
1, •

〉
)

• The entire network represents the function

f (x) = f (3)(f (2)(x)) = f (3) ◦ f (2)(x)

A feed-forward network represents a function as a composition of several functions, each
given by one layer.

Advanced Machine Learning 158 / 188

x1 x2

. . .

xd

. . .

. . .

...
...

...

. . .

. . .

= f (1)

= f (2)

= f (K)

f (x) = f (K)(· · · f (2)(f (1)(x))) = f (K) ◦ . . . ◦ f (1)(x)

Advanced Machine Learning 159 / 188

LAYERS AND COMPOSITIONS

General feed-forward networks
A feed-forward network with K layers represents a function

f (x) = f (K) ◦ . . . ◦ f (1)(x)

Each layer represents a function f (k). These functions are of the form:

f (k)(•) =


φ

(k)
1 (
〈

w(k)
1 , •

〉
)

...
φ

(k)
d (
〈

w(k)
d , •

〉
)

 typically: φ(k)(x) =



σ(x) (sigmoid)
I{±x > τ} (threshold)
c (constant)
x (linear)
max{0, x} (rectified linear)

Dimensions
• Each function f (k) is of the form

f (k) : Rdk → Rdk+1

• dk is the number of nodes in the kth layer. It is also called the width of the layer.
• We mostly assume for simplicity: d1 = . . . = dK =: d.

Advanced Machine Learning 160 / 188

ORIGIN OF THE NAME

If you look up the term “neuron” online, you will find illustrations like this:

This one comes from a web site called easyscienceforkids.com, which means it is likely to be scientifically more accurate than
typical references to “neuron” and “neural” in machine learning.

Roughly, a neuron is a brain cell that:
• Collects electrical signals (typically from other neurons)
• Processes them
• Generates an output signal

What happens inside a neuron is an intensely studied problem in neuroscience.

Source: easyscienceforkids.comAdvanced Machine Learning 161 / 188

HISTORICAL PERSPECTIVE: MCCULLOCH-PITTS NEURON

A neuron is modeled as a “thresholding device” that combines input signals:

v1 v2

x1 x2

y

I{• > c}

McCulloch-Pitts neuron model (1943)
• Collect the input signals x1, x2 into a vector x = (x1, x2) ∈ R2

• Choose fixed vector v ∈ R2 and constant c ∈ R.
• Compute:

y = I{〈v, x〉 > c} for some c ∈ R .

• In hindsight, this is a neural network with two layers, and function φ(•) = I{ • > c} at
the bottom unit.

Advanced Machine Learning 162 / 188

RECALL: LINEAR CLASSIFICATION

v

x

〈x,v〉
‖v‖

f (x) = sgn(〈v, x〉 − c)

Advanced Machine Learning 163 / 188

LINEAR CLASSIFIER IN R2 AS TWO-LAYER NN

v1 v2 −c

x1 x2 1

f (x)

I{• > 0}

f (x) = I{ v1x1 + v2x2 + 1 · (−c) > 0 } = I{〈v, x〉 > c}

Equivalent to linear classifier
The linear classifier on the previous slide and f differ only in whether they encode the “blue”
class as -1 or as 0:

sgn(〈v, x〉 − c) = 2f (x)− 1

Advanced Machine Learning 164 / 188

REMARKS

v1 v2 −c

y = I{〈v, x〉 > c}

x1 x2 1

• This neural network represents a linear two-class classifier (on R2).
• We can more generally define a classifier on Rd by adding input units, one per dimension.
• It does not specify the training method.
• To train the classifier, we need a cost function and an optimization method.

Advanced Machine Learning 165 / 188

TYPICAL COMPONENT FUNCTIONS

Linear units

φ(x) = x

This function simply “passes on” its incoming signal. These are used for example to represent
inputs (data values).

Constant functions

φ(x) = c

These can be used e.g. in combination with an indicator function to define a threshold, as in the
linear classifier above.

Advanced Machine Learning 166 / 188

TYPICAL COMPONENT FUNCTIONS

Indicator function

φ(x) = I{x > 0}

Example: Final unit is indicator

v1 v2 −c

x1 x2 1

f (x)

I{• > 0}

Advanced Machine Learning 167 / 188

TYPICAL COMPONENT FUNCTIONS

Sigmoids

φ(x) =
1

1 + e−x

-10 -5 5 10

0.2

0.4

0.6

0.8

1.0

Example: Final unit is sigmoid

v1 v2 −c

x1 x2 1

f (x)

σ(•)

Advanced Machine Learning 168 / 188

TYPICAL COMPONENT FUNCTIONS

Rectified linear units

φ(x) = max{0, x}

These are currently perhaps the most commonly used unit in the “inner” layers of a neural
network (those layers that are not the input or output layer).

Advanced Machine Learning 169 / 188

HIDDEN LAYERS AND NONLINEAR FUNCTIONS

Hidden units
• Any nodes (or “units”) in the network that are neither input nor output nodes are called

hidden.
• Every network has an input layer and an output layer.
• If there any additional layers (which hence consist of hidden units), they are called hidden

layers.

Linear and nonlinear networks
• If a network has no hidden units, then

fi(x) = φi(
〈

wi, x
〉
)

That means: f is a linear functions, except perhaps for the final application of φ.
• For example: In a classification problem, a two layer network can only represent linear

decision boundaries.
• Networks with at least one hidden layer can represent nonlinear decision surfaces.

Advanced Machine Learning 170 / 188

TWO VS THREE LAYERS

10 CHAPTER 6. MULTILAYER NEURAL NETWORKS

While we can be confident that a complete set of functions, such as all polynomi-
als, can represent any function it is nevertheless a fact that a single functional form
also suffices, so long as each component has appropriate variable parameters. In the
absence of information suggesting otherwise, we generally use a single functional form
for the transfer functions.

While these latter constructions show that any desired function can be imple-
mented by a three-layer network, they are not particularly practical because for most
problems we know ahead of time neither the number of hidden units required, nor
the proper weight values. Even if there were a constructive proof, it would be of little
use in pattern recognition since we do not know the desired function anyway — it
is related to the training patterns in a very complicated way. All in all, then, these
results on the expressive power of networks give us confidence we are on the right
track, but shed little practical light on the problems of designing and training neural
networks — their main benefit for pattern recognition (Fig. 6.3).

Two"layer

Three"layer

x1 x2

x1

x2

...

x1 x2

fl

R1

R2

R1

R
2

R
2

R1

x2

x1

Figure 6.3: Whereas a two-layer network classifier can only implement a linear decision
boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex, nor simply connected.

6.3 Backpropagation algorithm

We have just seen that any function from input to output can be implemented as a
three-layer neural network. We now turn to the crucial problem of setting the weights
based on training patterns and desired output.

10 CHAPTER 6. MULTILAYER NEURAL NETWORKS

While we can be confident that a complete set of functions, such as all polynomi-
als, can represent any function it is nevertheless a fact that a single functional form
also suffices, so long as each component has appropriate variable parameters. In the
absence of information suggesting otherwise, we generally use a single functional form
for the transfer functions.

While these latter constructions show that any desired function can be imple-
mented by a three-layer network, they are not particularly practical because for most
problems we know ahead of time neither the number of hidden units required, nor
the proper weight values. Even if there were a constructive proof, it would be of little
use in pattern recognition since we do not know the desired function anyway — it
is related to the training patterns in a very complicated way. All in all, then, these
results on the expressive power of networks give us confidence we are on the right
track, but shed little practical light on the problems of designing and training neural
networks — their main benefit for pattern recognition (Fig. 6.3).

Two"layer

Three"layer

x1 x2

x1

x2

...

x1 x2

fl

R1

R2

R1

R
2

R
2

R1

x2

x1

Figure 6.3: Whereas a two-layer network classifier can only implement a linear decision
boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex, nor simply connected.

6.3 Backpropagation algorithm

We have just seen that any function from input to output can be implemented as a
three-layer neural network. We now turn to the crucial problem of setting the weights
based on training patterns and desired output.

10 CHAPTER 6. MULTILAYER NEURAL NETWORKS

While we can be confident that a complete set of functions, such as all polynomi-
als, can represent any function it is nevertheless a fact that a single functional form
also suffices, so long as each component has appropriate variable parameters. In the
absence of information suggesting otherwise, we generally use a single functional form
for the transfer functions.

While these latter constructions show that any desired function can be imple-
mented by a three-layer network, they are not particularly practical because for most
problems we know ahead of time neither the number of hidden units required, nor
the proper weight values. Even if there were a constructive proof, it would be of little
use in pattern recognition since we do not know the desired function anyway — it
is related to the training patterns in a very complicated way. All in all, then, these
results on the expressive power of networks give us confidence we are on the right
track, but shed little practical light on the problems of designing and training neural
networks — their main benefit for pattern recognition (Fig. 6.3).

Two"layer

Three"layer

x1 x2

x1

x2

...

x1 x2

fl

R1

R2

R1

R
2

R
2

R1

x2

x1

Figure 6.3: Whereas a two-layer network classifier can only implement a linear decision
boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex, nor simply connected.

6.3 Backpropagation algorithm

We have just seen that any function from input to output can be implemented as a
three-layer neural network. We now turn to the crucial problem of setting the weights
based on training patterns and desired output.

10 CHAPTER 6. MULTILAYER NEURAL NETWORKS

While we can be confident that a complete set of functions, such as all polynomi-
als, can represent any function it is nevertheless a fact that a single functional form
also suffices, so long as each component has appropriate variable parameters. In the
absence of information suggesting otherwise, we generally use a single functional form
for the transfer functions.

While these latter constructions show that any desired function can be imple-
mented by a three-layer network, they are not particularly practical because for most
problems we know ahead of time neither the number of hidden units required, nor
the proper weight values. Even if there were a constructive proof, it would be of little
use in pattern recognition since we do not know the desired function anyway — it
is related to the training patterns in a very complicated way. All in all, then, these
results on the expressive power of networks give us confidence we are on the right
track, but shed little practical light on the problems of designing and training neural
networks — their main benefit for pattern recognition (Fig. 6.3).

Two"layer

Three"layer

x1 x2

x1

x2

...

x1 x2

fl

R1

R2

R1

R
2

R
2

R1

x2

x1

Figure 6.3: Whereas a two-layer network classifier can only implement a linear decision
boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex, nor simply connected.

6.3 Backpropagation algorithm

We have just seen that any function from input to output can be implemented as a
three-layer neural network. We now turn to the crucial problem of setting the weights
based on training patterns and desired output.

Illustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001Advanced Machine Learning 171 / 188

THE XOR PROBLEM

6.2. FEEDFORWARD OPERATION AND CLASSIFICATION 7

bias
hidden j

output k

input i

11
1 1

.5

-1.5

.7
-.4-1

x1 x2

x1

x2

z=1

z= -1

z= -1

-1

0

1
-1

0

1

-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1

R2

R2

R1

y1 y2

z

zk

wkj

wji

Figure 6.1: The two-bit parity or exclusive-OR problem can be solved by a three-layer
network. At the bottom is the two-dimensional feature space x1 − x2, and the four
patterns to be classified. The three-layer network is shown in the middle. The input
units are linear and merely distribute their (feature) values through multiplicative
weights to the hidden units. The hidden and output units here are linear threshold
units, each of which forms the linear sum of its inputs times their associated weight,
and emits a +1 if this sum is greater than or equal to 0, and −1 otherwise, as shown
by the graphs. Positive (“excitatory”) weights are denoted by solid lines, negative
(“inhibitory”) weights by dashed lines; the weight magnitude is indicated by the
relative thickness, and is labeled. The single output unit sums the weighted signals
from the hidden units (and bias) and emits a +1 if that sum is greater than or equal
to 0 and a -1 otherwise. Within each unit we show a graph of its input-output or
transfer function — f(net) vs. net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers.

6.2. FEEDFORWARD OPERATION AND CLASSIFICATION 7

bias
hidden j

output k

input i

11
1 1

.5

-1.5

.7
-.4-1

x1 x2

x1

x2

z=1

z= -1

z= -1

-1

0

1
-1

0

1

-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1

R2

R2

R1

y1 y2

z

zk

wkj

wji

Figure 6.1: The two-bit parity or exclusive-OR problem can be solved by a three-layer
network. At the bottom is the two-dimensional feature space x1 − x2, and the four
patterns to be classified. The three-layer network is shown in the middle. The input
units are linear and merely distribute their (feature) values through multiplicative
weights to the hidden units. The hidden and output units here are linear threshold
units, each of which forms the linear sum of its inputs times their associated weight,
and emits a +1 if this sum is greater than or equal to 0, and −1 otherwise, as shown
by the graphs. Positive (“excitatory”) weights are denoted by solid lines, negative
(“inhibitory”) weights by dashed lines; the weight magnitude is indicated by the
relative thickness, and is labeled. The single output unit sums the weighted signals
from the hidden units (and bias) and emits a +1 if that sum is greater than or equal
to 0 and a -1 otherwise. Within each unit we show a graph of its input-output or
transfer function — f(net) vs. net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers.

Solution regions we would like to represent Neural network representation

• Two ridges at different locations are substracted from each other.
• That generates a region bounded on both sides.
• A linear classifier cannot represent this decision region.
• Note this requires at least one hidden layer.

Illustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001Advanced Machine Learning 172 / 188

6.2. FEEDFORWARD OPERATION AND CLASSIFICATION 9

input feature xi. Each hidden unit emits a nonlinear function Ξ of its total input; the
output unit merely emits the sum of the contributions of the hidden units.

Unfortunately, the relationship of Kolmogorov’s theorem to practical neural net-
works is a bit tenuous, for several reasons. In particular, the functions Ξj and ψij

are not the simple weighted sums passed through nonlinearities favored in neural net-
works. In fact those functions can be extremely complex; they are not smooth, and
indeed for subtle mathematical reasons they cannot be smooth. As we shall soon
see, smoothness is important for gradient descent learning. Most importantly, Kol-
mogorov’s Theorem tells us very little about how to find the nonlinear functions based
on data — the central problem in network based pattern recognition.

A more intuitive proof of the universal expressive power of three-layer nets is in-
spired by Fourier’s Theorem that any continuous function g(x) can be approximated
arbitrarily closely by a (possibly infinite) sum of harmonic functions (Problem 2). One
can imagine networks whose hidden units implement such harmonic functions. Proper
hidden-to-output weights related to the coefficients in a Fourier synthesis would then
enable the full network to implement the desired function. Informally speaking, we
need not build up harmonic functions for Fourier-like synthesis of a desired function.
Instead a sufficiently large number of “bumps” at different input locations, of different
amplitude and sign, can be put together to give our desired function. Such localized
bumps might be implemented in a number of ways, for instance by sigmoidal transfer
functions grouped appropriately (Fig. 6.2). The Fourier analogy and bump construc-
tions are conceptual tools, they do not explain the way networks in fact function. In
short, this is not how neural networks “work” — we never find that through train-
ing (Sect. 6.3) simple networks build a Fourier-like representation, or learn to group
sigmoids to get component bumps.

y1

y2

y4

y3

y3 y4y2y1

x1 x2

z1

z1

x1

x2

Figure 6.2: A 2-4-1 network (with bias) along with the response functions at different
units; each hidden and output unit has sigmoidal transfer function f(·). In the case
shown, the hidden unit outputs are paired in opposition thereby producing a “bump”
at the output unit. Given a sufficiently large number of hidden units, any continuous
function from input to output can be approximated arbitrarily well by such a network.

Illustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001Advanced Machine Learning 173 / 188

NUMBER OF LAYERS

We have observed
• We have seen that two-layer classification networks always represent linear class

boundaries.
• With three layers, the boundaries can be non-linear.

Obvious question
• What happens if we use more than three layers? Do four layers again increase expressive

power?

Not examinable.Advanced Machine Learning 174 / 188

WIDTH VS DEPTH

A neural network represents a (typically) complicated function f by simple functions φ(k)
i .

What functions can be represented?
A well-known result in approximation theory says: Every continuous function f : [0, 1]d → R
can be represented in the form

f (x) =

2d+1∑
j=1

ξj

(d∑
i=1

τij(xi)
)

where ξi and τij are functions R→ R. A similar result shows one can approximate f to
arbitrary precision using specifically sigmoids, as

f (x) ≈
M∑

j=1

w(2)
j σ

(d∑
i=1

w(1)
ij xi + ci

)
for some finite M and constants ci.
Note the representations above can both be written as neural networks with three layers (i.e.
with one hidden layer).

Not examinable.Advanced Machine Learning 175 / 188

WIDTH VS DEPTH

Depth rather than width
• The representations above can achieve arbitrary precision with a single hidden layer

(roughly: a three-layer neural network can represent any continuous function).
• In the first representation, ξj and τij are “simpler” than f because they map R→ R.
• In the second representation, the functions are more specific (sigmoids), and we typically

need more of them (M is large).
• That means: The price of precision are many hidden units, i.e. the network grows wide.
• The last years have shown: We can obtain very good results by limiting layer width, and

instead increasing depth (= number of layers).
• There is no coherent theory yet to properly explain this behavior.

Limiting width
• Limiting layer width means we limit the degrees of freedom of each function f (k).
• That is a notion of parsimony.
• Again: There seem to be a lot of interesting questions to study here, but so far, we have no

real answers.

Not examinable.Advanced Machine Learning 176 / 188

TRAINING NEURAL NETWORKS

Task
• We decide on a neural network “architecture”: We fix the network diagram, including all

functions φ at the units. Only the weights w on the edges can be changed during by
training algorithm. Suppose the architecture we choose has d1 input units and d2 output
units.

• We collect all weights into a vector w. The entire network then represents a function fw(x)
that maps Rd1 → Rd2 .

• To “train” the network now means that, given training data, we have to determine a
suitable parameter vector w, i.e. we fit the network to data by fitting the weights.

More specifically: Classification
Suppose the network is meant to represent a two-class classifier.
• That means the output dimension is d2 = 1, so fw is a function Rd1 → R.
• We are given data x1, x2, . . . with labels y1, y2,
• We split this data into training, validation and test data, according to the requirements of

the problem we are trying to solve.
• We then fit the network to the training data.

Not examinable.Advanced Machine Learning 177 / 188

TRAINING NEURAL NETWORKS

x̃

fw(x̃)

• We run each training data point x̃i through the network fw
and compare fw(x̃i) to ỹi to measure the error.

• Recall how gradient descent works: We make “small”
changes to w, and choose the one which decreases the error
most. That is one step of the gradient scheme.

• For each such changed value w′, we again run each training
data point x̃i through the network fw′ , and measure the error
by comparing fw′ (x̃i) to ỹi.

Not examinable.Advanced Machine Learning 178 / 188

TRAINING NEURAL NETWORKS

Error measure
• We have to specify how we compare the network’s output fw(x) to the correct answer y.
• To do so, we specify a function D with two arguments that serves as an error measure.
• The choice of D depends on the problem.

Typical error measures
• Classification problem:

D(ŷ, y) := y log ŷ (with convention 0 log 0 = 0)

• Regression problem:
D(ŷ, y) := ‖y− ŷ‖2

Training as an optimization problem
• Given: Training data (x1, y1), . . . , (xn, yn) with labels yi.
• We specify an error measure D, and define the total error on the training set as

J(w) :=

n∑
i=1

D(fw(x̃i), ỹi)

Not examinable.Advanced Machine Learning 179 / 188

BACKPROPAGATION

Training problem
In summary, neural network training attempts to solve the optimization problem

w∗ = arg min
w

J(w)

using gradient descent. For feed-forward networks, the gradient descent algorithm takes a
specific form that is called backpropagation.

Backpropagation is gradient descent applied to J(w) in a feed-forward network.

In practice: Stochastic gradient descent
• The vector w can be very high-dimensional. In high dimensions, computing a gradient is

computationally expensive, because we have to make “small changes” to w in many
different directions and compare them to each other.

• Each time the gradient algorithm computes J(w′) for a changed value w′, we have to
apply the network to every data point, since J(w′) =

∑n
i=1 D(fw′ (x̃i), ỹi).

• To save computation, the gradient algorithm typically computes D(fw′ (x̃i), ỹi) only for
some small subset of a the training data. This subset is called a mini batch, and the
resulting algorithm is called stochastic gradient descent.

Not examinable.Advanced Machine Learning 180 / 188

BACKPROPAGATION

Neural network training optimization problem

min
w

J(w)

The application of gradient descent to this problem is called backpropagation.

Backpropagation is gradient descent applied to J(w) in a feed-forward network.

Deriving backpropagation
• We have to evaluate the derivative∇wJ(w).
• Since J is additive over training points, J(w) =

∑
n Jn(w), it suffices to derive∇wJn(w).

Not examinable.Advanced Machine Learning 181 / 188

BACKPROPAGATION

Deriving backpropagation
• We have to evaluate the derivative∇wJ(w).
• Since J is additive over training points, J(w) =

∑
n Jn(w), it suffices to derive∇wJn(w).

Not examinable.Advanced Machine Learning 182 / 188

CHAIN RULE

Recall from calculus: Chain rule
Consider a composition of functions f ◦ g(x) = f (g(x)).

d(f ◦ g)

dx
=

df
dg

dg
dx

If the derivatives of f and g are f ′ and g′, that means: d(f◦g)
dx (x) = f ′(g(x))g′(x)

Application to feed-forward network
Let w(k) denote the weights in layer k. The function represented by the network is

fw(x) = f (K)
w ◦ · · · ◦ f (1)

w (x) = f (K)

w(K) ◦ · · · ◦ f (1)
w(1) (x)

To solve the optimization problem, we have to compute derivatives of the form

d
dw

D(fw(xn), yn) =
dD(• , yn)

dfw

dfw
dw

Not examinable.Advanced Machine Learning 183 / 188

DECOMPOSING THE DERIVATIVES

• The chain rule means we compute the derivates layer by layer.
• Suppose we are only interested in the weights of layer k, and keep all other weights fixed.

The function f represented by the network is then

fw(k) (x) = f (K) ◦ · · · ◦ f (k+1) ◦ f (k)
w(k) ◦ f (k−1) ◦ · · · ◦ f (1)(x)

• The first k − 1 layers enter only as the function value of x, so we define

z(k) := f (k−1) ◦ · · · ◦ f (1)(x)

and get
fw(k) (x) = f (K) ◦ · · · ◦ f (k+1) ◦ f (k)

w(k) (z(k))

• If we differentiate with respect to w(k), the chain rule gives

d
dw(k)

fw(k) (x) =
df (K)

df (K−1)
· · ·

df (k+1)

df (k)
·

df (k)
w(k)

dw(k)

Not examinable.Advanced Machine Learning 184 / 188

WITHIN A SINGLE LAYER

• Each f (k) is a vector-valued function f (k) : Rdk → Rdk+1 .
• It is parametrized by the weights w(k) of the kth layer and takes an input vector z ∈ Rdk .

• We write f (k)(z,w(k)).

Layer-wise derivative
Since f (k) and f (k−1) are vector-valued, we get a Jacobian matrix

df (k+1)

df (k)
=



∂f (k+1)
1

∂f (k)
1

. . .
∂f (k+1)

1

∂f (k)
dk

...
...

∂f (k+1)
dk+1

∂f (k)
1

. . .
∂f (k+1)

dk+1

∂f (k)
dk


=: ∆(k)(z,w(k+1))

• ∆(k) is a matrix of size dk+1 × dk .

• The derivatives in the matrix quantify how f (k+1) reacts to changes in the argument of
f (k) if the weights w(k+1) and w(k) of both functions are fixed.

Not examinable.Advanced Machine Learning 185 / 188

BACKPROPAGATION ALGORITHM

Let w(1), . . . ,w(K) be the current settings of the layer weights. These have either been
computed in the previous iteration, or (in the first iteration) are initialized at random.

Step 1: Forward pass
We start with an input vector x and compute

z(k) := f (k) ◦ · · · ◦ f (1)(x)

for all layers k.

Step 2: Backward pass
• Start with the last layer. Update the weights w(K) by performing a gradient step on

D
(

f (K)(z(K),w(K)), y
)

regarded as a function of w(K) (so z(K) and y are fixed). Denote the updated weights w̃(K).
• Move backwards one layer at a time. At layer k, we have already computed updates

w̃(K), . . . , w̃(k+1). Update w(k) by a gradient step, where the derivative is computed as

∆(K−1)(z(K−1), w̃(K)) · . . . ·∆(k)(z(k), w̃(k+1))
df (k)

dw(k)
(z,w(k))

On reaching level 1, go back to step 1 and recompute the z(k) using the updated weights.

Not examinable.Advanced Machine Learning 186 / 188

SUMMARY: BACKPROPAGATION

• Backpropagation is a gradient descent method for the optimization problem

min
w

J(w) =
N∑

i=1

D(fw(xi), yi)

D must be chosen such that it is additive over data points.

• It alternates between forward passes that update the layer-wise function values z(k) given
the current weights, and backward passes that update the weights using the current z(k).

• The layered architecture means we can (1) compute each z(k) from z(k−1) and (2) we can
use the weight updates computed in layers K, . . . , k + 1 to update weights in layer k.

Not examinable.Advanced Machine Learning 187 / 188

BACKGROUND: GRAPHS

The following slides summarize some background that may be helpful if you have not
encountered the concept of a graph before.

UNDIRECTED GRAPHS

A graph consists of:
• A set of vertices V = {v1, . . . , vn}. (The vertices are also called nodes.)
• A set E of edges between these vertices.

Each edge is a pair (v, v′), where v and v′ are vertices. If (v, v′) ∈ E , we think of v and v′
as connected.

We depict a graph by representing each node as a circle, and connecting two nodes by a line if
they share an edge.

Example
Here is the graph given by:
• The vertex set V = {v1, v2, v3, v4}.
• The edge set E = {(v1, v3), (v2, v3)}.

v1 v2

v3 v4

Note the edges in this graph have no direction: If we draw a graph in this manner, and replace
the edge (v1, v3) by (v3, v1), the graph still looks the same.
A graph in which we do not distinguish between the edge (v, v′) and the edge (v′, v), for any
two vertices v and v′, is called undirected.

DIRECTED GRAPHS

• If we regard (v, v′) and (v′, v) as two separate objects, each pair of vertices can be
associated with two edges.

• If we distinguish the order of vertices within edges, the graph is called a directed graph.
• In other words: In an undirected graph, an edge (v, v′) is a connection between the

vertices v and v′. An a directed graph, (v, v′) is a connection from v to v′.

We indicate that in the diagram by replacing the line between v to v′ by an arrow from v to v′:

v1 v2

v3 v4

E = {(v1, v3), (v3, v2)}

v1 v2

v3 v4

E = {(v3, v1), (v3, v2)}

In the class
• Directed graphs are used in the transition diagrams of Markov chains, to represent

directed graphical models (e.g. HMMs), and for neural networks. The “web graph” that
represents (part of) the world wide web in the PageRank example is also a directed graph.

• Undirected graphs are used e.g. in Markov random fields.
• In Markov random fields, we also use weighted graphs (see below).

ADJACENCY MATRIX

• A graph with n vertices v1, . . . , vn and edge set E can be represented as an n× n-matrix A.
• The entries of this matrix are:

Aij :=

{
1 (vi, vj) ∈ E
0 (vi, vj) 6∈ E for i, j ∈ {1, . . . , n}

• If the graph is directed, then Aij = Aji, so the matrix is symmetric.
• If the graph is undirected, Aij and Aji may be different (but do not have to be). The

adjacency matrix of an undirected graph is not symmetric.
• Here are the adjacency matrices for the graphs on the previous two slides:

v1 v2

v3 v4

E = {(v1, v3), (v2, v3)}

A =


0 0 1 0
0 0 1 0
1 1 0 0
0 0 0 0



v1 v2

v3 v4

E = {(v1, v3), (v3, v2)}

A =


0 0 1 0
0 0 0 0
0 1 0 0
0 0 0 0



v1 v2

v3 v4

E = {(v3, v1), (v3, v2)}

A =


0 0 0 0
0 0 0 0
1 1 0 0
0 0 0 0



WEIGHTED GRAPH

• We can also define an adjacency matrix whose entries are arbitrary scalars, rather than
only 0 or 1.

• In this case, we think of the entry Aij as a weight of the edge (vi, vj).
• Such a graph is called a weighted graph.
• Note this definition is very general: We can think of every square matrix with real-valued

entries as a weighted graph.
• If we draw a weighted graph, we write the edge weight next to the edge. If the weight is

zero, we often omit drawing the edge.
• For example, here is a weighted graph with vertex set v1, v2, v3:

v1 v2

v3

1
2 30

A =

 0 0 0
0 0 0
1
2 30 0



• We had encountered weighted, undirected graphs as neighborhood graphs of Markov
random fields. Undirected again means Aij = Aji for all vertices i and j.

• Another example (of a weighted graph that is directed, as the example above) would be a
social network, where each vertex represents a user, and Aij is the number of emails user i
has sent to user j. In this case, the edge weights would be non-negative integers.

